Railway Forum Napoli 2025

Proven Preventive Measures for Resilient Slab Track Systems

Insights from High-Speed, Semi-High-Speed

MEng., Mehdi Maghfouri, PMP

Chief Technical Manager

Larsen and Toubro Railway Business Group

Outline

1. Evolution of Slab Track systems

2. Global preference for Slab Track systems

3. Cost share of Precast Slab Track

4. Process of manufacturing & installation of Slab Track

5. Key factors influencing resilience of Slab Track

6. Correlation matrix for resilient Slab Track

7. Engineering recommendations for Slab Track's resilience

1. Evolution of Slab Track System

1960s - 1980s

Early Development

Japan (Shinkansen) Germany (Rheda)

- Designed to replace ballast

Focus: stability and low maintenance

Speed: Up to 210 km/h

2000s - 2010s

Rapid System Integration

- Slab track became standard for HSR lines

Focus: fastening technologies

Speed: 250-350 km/h

1990s - 2000s

System Diversification

- Wider adoption across Europe and Asia (precast and cast-in-situ designs)

Focus: Easy construction and vibration control

Speed: Up to 250 km/h

2010s – Present, Modern Era

Dominance of Precast Concrete Slab Track

(rapid installation and high precision)

Focus: Integration with AI, digital QC, and LCC

optimization

Speed: *350–400+ km/h*

2. Global preference for Slab Track system

- 2.1. Precision & quality
- 2.2. Fast construction & reduced disruption
- 2.3. Enhanced durability
- 2.4. Lower Life-Cycle maintenance
- 2.5. Reliability Proven

2.1. Precision and quality

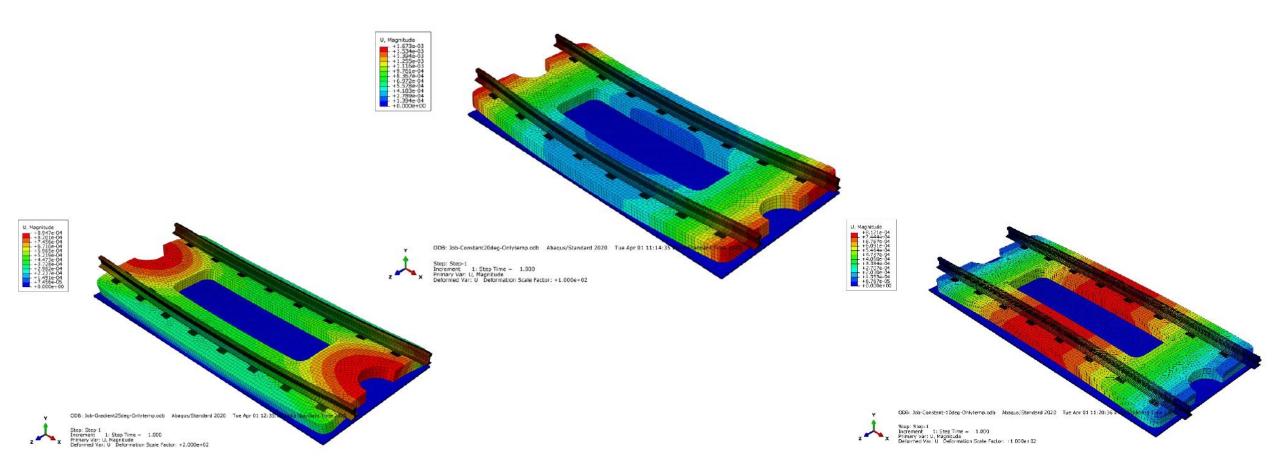
- Factory-produced under controlled conditions
- Ensures dimensional accuracy and uniform performance

Illustration of allowable tolerances for slab track in European and Asian projects

Item	Inspection	Tolerance (mm)	Item Inspection	Tolerance (mm)
1	Length	±6.0	1 Length (longitudinally)	±3.0
2	Width	±4.0		_5.0
3	Thickness	±4.0	2 Length (diagonally)	±3.0
4	Dowel spacing	±1.0	3 Width	±3.0
5	Interior fastener shoulder distance	±1.5	4 Thickness	+3.0
6	Exterior fastener shoulder distance	±1.5	5 Space between inserts	±1.0
7	Planarity	±2.0	6 Diameter at semi-circle portion	n ±3.0
8	Arch rise dimension	±0.3	•	
9	Slop deviation	±0.5	7 Twist	±1.0
10	Deviation of the bearing surface	±0.7	8 Slant at insert	±1.0

2.2. Fast construction and installation

- Precast elements allow rapid installation
- Ideal for projects requiring minimal operational downtime


Precast Slab Track
Production cycle: 20 hours

100 km Single Track (scenario for discussion)

Slab production rate	100 slabs/day
Total production period	≈8 months
Installation rate	200m/day
Total installation period	≈4 months
Total production and installation period	6 months (2 months buffer stock for slabs)

2.3. Enhanced durability

- High resistance to fatigue, weathering, and environmental effects
- Maintains stability and alignment over long service life

2.4. Lower Life-Cycle maintenance

- Minimal ballast cleaning, tamping, or realignment required
- Reduced maintenance costs and extended service intervals

Construction cost VS Maintenance cost

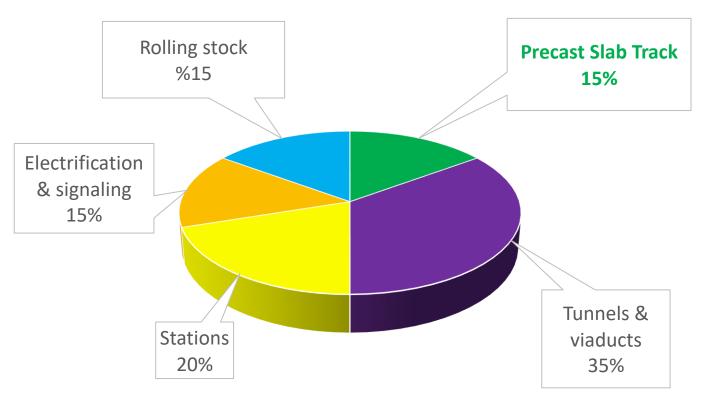
Focus	Construction Cost	Maintenance Cost	Key Findings / Conclusions	Reference
Sanyo Shinkansen (Japan)	1.5x higher for slab track	¼ of ballasted track	Life-cycle costs balance ≈12 years	Ando et al.
High-speed lines (up to 360 km/h)	Competitive if <1500 €/m	Uncertain but potentially lower	Net Present Value nearly equal for both systems over 35 years	Rivier et al. (SNCF)
72 km section (320–360 km/h)	Slightly higher initial cost, compensated by savings in maintenance.	Lower due to stability of track	2–6% reduction in earthworks and ≈3.5% in civil engineering costs; cost balance over 50 years	Zabée (TGV Eastern Line)

2.5. Reliability proven

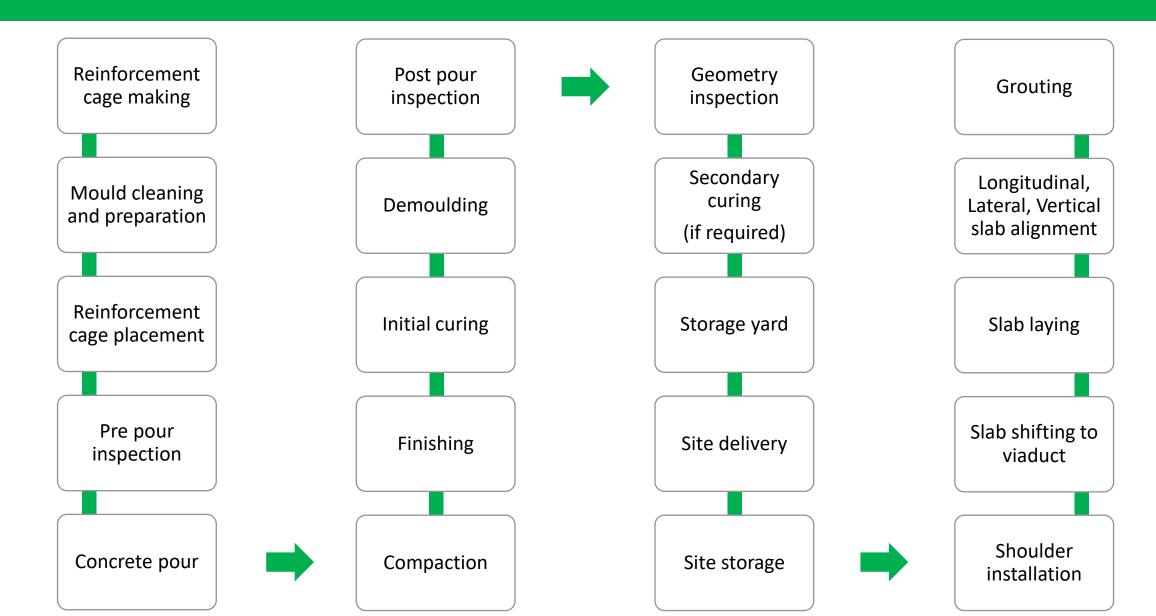
- Proven performance in high-speed, metro, and heavy-haul systems
- Supports long-term reliability and safety goals

Slab Track System in East and Southeast Asian countries


Country	Operational Length (km)	Typical Speed (km/h)	Slab Track System	Key Example Line(s)	Remarks
China	~48,000	300–350	CRTS I/II/III	Beijing–Shanghai, Wuhan–Guangzhou, Beijing–Hong Kong	World's largest slab-track network
Japan	~3,700	240–320	Shinkansen Slab Track	Tokaido, Tohoku, Kyushu Shinkansen	Pioneer; benchmark for precision & reliability
South Korea	~1,100	300–320	Hybrid Slab (Japanese-influenced)	Gyeongbu, Honam KTX	Mix of embedded & direct-fixation slab
Taiwan	350	300	Japanese Shinkansen	Taipei–Kaohsiung HSR	Same system as Japan, adapted for local climate
Indonesia	142	350	CRTS (Chinese)	Jakarta–Bandung HSR	First operational HSR in Southeast Asia


3. Cost share of Precast Slab Track

Precast Slab Tracks' cost account for **10–20%** of the total project cost


While the track is a significant expense, other major costs include:

- Tunnels & viaducts
- Stations
- Electrification & signaling
- Rolling stock

4. Process of Manufacturing and Installation of slab track

5. Factors influencing resilience of Slab Track – Pre pouring stage

Mould Cleaning

Mould Geometry

Reinforcement Cage Quality

Inserts Fixation

Typical Defects (on slabs)

- Poor surface finish
- Bugholes
- Edge defects

- Rounded edges
- Uneven surfaces
- Gaps in mould joints

- Uneven cover cage
- Bond issues
- Cage deformation

- Misaligned inserts
- incomplete embedment
- Defects around inserts

Preventive Measures

- **Preventive** Remove hardened con.
 - Inspect corners, joints, and insert locations
 - Apply release oil
 - Clean insert seats

- Verify dimensions, flatness & alignment
- Ensure proper joint closure

- Place and secure cage using cover blocks and spacers
- Rebars to be clean, rust-free, and properly fixed

- Fix inserts using jigs or clamps
- Inspect after final positioning before pouring

5. Factors influencing resilience of Slab Track – Pouring stage

Concrete Quality

Uniform concreting

Finishing

Curing

Typical Defects (on slabs)

- Segregation or bleeding
- Variation in strength and durability
- Uneven concrete pouring
- Voids, honeycombing
- Uneven surface
- Tolerance in level
- Surface cracking

- Shrinkage cracks
- Reduced strength and durability

Preventive Measures

- Proper batching and mix design
- Proper concrete transportation
- Fresh concrete tests

- Pour in layers
- Uniform vibration across entire slab
- Adequate vibration frequency
- Finish surface according to design tolerance
- Avoid overworking the surface

- Begin curing immediately after finishing
- Use wet covers, curing compounds, or steam curing

5. Factors influencing resilience of Slab Track – Post pouring stage

demoulding

Monitor maturity

Factory Concrete Demoulding Lifting Storage yard **Maturity** Layout Cracking Chipping Cracks due to Slab damage during Surface cracking **Typical** bending handling or transport Spalling Deformation Staining **Defects** Reinforcement Surface damage (on slabs) stress during lifting Proper demoulding Correct lifting points Specified curing To have a liner set up Proper ground condition **Preventive** and anchors period tools Plan clear movement Storage in designated areas Measures Check crane capacity strength tests Gradual and uniform and handling zones Maintain drainage before before lifting release pressure

5. Factors influencing resilience of Slab Track – Installation stage

Site Handling & Lifting Grouting **Transportation** Deformation Cracks Voids or incomplete grout filling **Typical** Warping Poor bond between slab and base Chipping **Defects** Cracking Anchor failure (on slabs) Surface damage Proper injection sequence and Use a leveled surface Approved lifting anchors **Preventive** equipment Safe lifting sequence Use proper spacers **Measures** Ensure complete filling and curing of Avoid excessive stacking Safe crane capacity grout/CAM • Inspect rigging before every lift Monitor for leaks or segregation

6. Correlation matrix for resilient Slab Track

Defect's root cause study and analysis

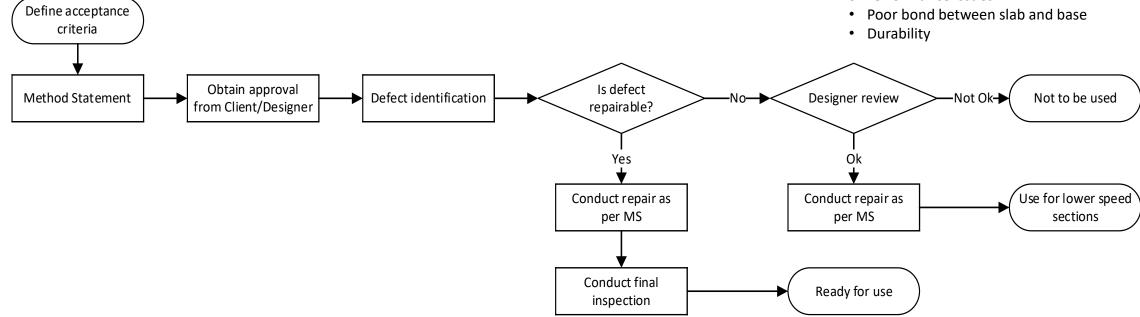
In case of defect occurrence

1. Surface appearance defects

- Poor surface finish
- Bug holes / pinholes
- Uneven surfaces
- Discoloration and surface bleeding

2. Edge and localized damage

- Edge defects
- Chipping
- · Surface damage


3. Structural/Material defects

- Voids, honeycombing
- Drying shrinkage crack
- Plastic cracks
- Deformation

4. Insert and anchorage defects

- Misaligned inserts
- Partial embedment
- Defects around inserts
- Anchor failure

5. Performance issues

7. Engineering recommendations for slab track resilience

- > Train the production and installation team on every stage of implementation
- Concrete mixture optimization
- > High level of automation for concrete production and distribution
- Controlled curing environment
- > High level of accuracy and durability for mould and vibration system
- Demoulding criteria and equipment
- Minimize indoor handling of slab track units
- Handling and transport protocol
- > Inspection procedures
- Defect identification and remedial action according to approved methods

Thank you for your attention!

Let's Keep Building the Future of Rail Smarter. Faster. Greener.

Get in Touch

Mehdi Maghfouri

m.maghfouri@gmail.com