

ABOUT RAILONE

RAILONE PRODUCT PORTFOLIO

QUALITY SINCE 1894

First international plant

Development of ballastless track system RHEDA CITY for urban transport

Development

of ballastless

track system

RHEDA 2000®

for long-

distance

Entry into heavy-duty transport delivery of sleepers for US network

Opening of the Aschaffenburg (DE) and Acquisition by Schwandorf the PCM (DE) plant Group of

Foundation

First concrete sleeper

Our Brand

RAILONE is the first one railroad

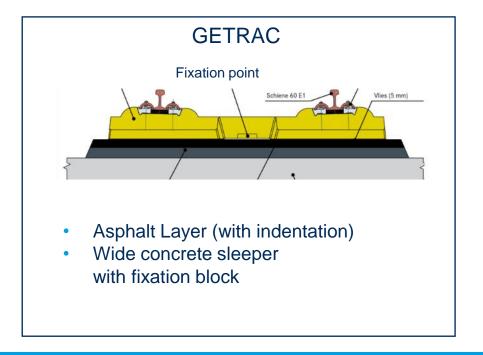
companies all over the world think of when they consider

Industries

to build, expand or upgrade their infrastructure. Thanks to our extensive

expertise, global experience and deep passion we deliver the best possible quality and

generate sustainable success – for our customers, our employees and the entire PCM RAILONE Group


RAILONE

BALLASTLESS TRACK TECHNOLOGY

RAILONE BALLASTLESS TRACKS SYSTEM DESIGN / STRUCTURE

RHEDA 2000 / RHEDA CITY gan ban yan dan dan ban ban ban dan dan dan ban ban ban ban dan dan dan ban ban dan dan ban ban ban ban In situ concrete slab(s) Bi-block sleeper with lattice girder reinforcement

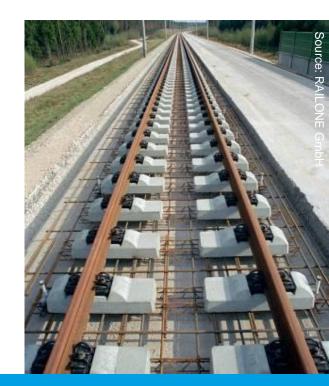
BALLASTLESS TRACK TYPE RHEDA 2000® / REHDA CITY®

With bi-block sleeper in in-situ cast concrete slab

References

As per today > 3.000 km (globally) and 30 years experience

Applications:


- RHEDA2000®: For High Speed, Standard and Heavy Haul traffic
- RHEDA CITY®: For Metro and Tram traffic

Main characteristics

- for easy installation and maximum accuracy
- for high reliability and best economic efficiency

Adaptable

- on tunnel, viaduct, embankment (and more) substructures
- for special trackwork e.g. S&C, REJ (and more)
- for high attenuation (Mass-Spring, high-resilient fastening)

BALLASTLESS TRACK TYPE GETRAC®

With Mono-Block sleeper on Asphalt slab

References:

As per today > 250 km (mostly track renewal) and 30 years experience

Applications:

for High Speed, Standard and Tram traffic

Main characteristics

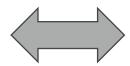
- for rapid installation and immediate use
- highly economic due to use of standard road and rail track installation equipment

Adaptable:

- on tunnel and embankment substructures
- for special trackwork e.g. S&C, REJ (and more)

BALLASTLESS TRACK TECHNOLOGY

SUCCESS FACTORS


BALLASTLESS TRACKS SUCCESS FACTORS (RISKS)

Design (Concept)

- Design process and methodology
- Staff experience & qualification

Construction / Installation

Simple thus repetitive processes

Components' manufacturing

- Material Sourcing
- Manufacturing technology
- QM / QC system

)

Durability

BALLASTLESS TRACKS ASSESSMENT "INTERNAL USE VS. DEPLOYMENT"

Exemplary request to ChatGPT:

I have invented a new construction machine. I can either use it myself, as a construction company, or make it available to any construction company.

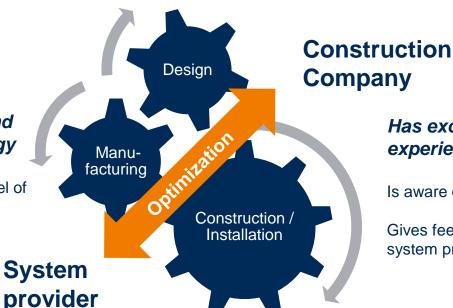
If I use it myself, I will generate profits through the sale of the machine, as will my construction company that uses it. Alternatively, I can make the machine available to many construction companies in many regions and markets.

Furthermore, I think that several construction companies will develop multiple uses for the machine that I probably wouldn't have identified on my own.

Please create a comparison of using the machine myself versus selling it and draw parallels to open-source versus proprietary software.

Al generated result:

	weighting	Internal use	Deploy- ment
Control & Quality Assurance	3	5	2
Scalability & Growth	3	2	5
Speed of Innovation	2	2	5
Investment Requirements	2	2	3
Short-Term Profitability	3	5	3
Long-Term Enterprise Value	3	3	5
Result:		47	62



BALLASTLESS TRACK PARTNERSHIP JOINT ACTIVITY TO OPTIMIZE PERFORMANCE (REDUCE RISKS)

Has excessive knowledge and experience on BLT technology

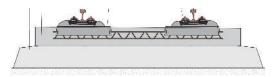
Considers constructability at the level of basic installation process

Takes feedback of >> 1 contractors

Has excessive knowledge and experience on (BLT) construction

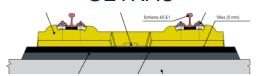
Is aware of basic design principles

Gives feedback on constrcutability to system provider


BALLASTLESS TRACK

INSTALLATION

RAILONE BALLASTLESS TRACKS SYSTEM DESIGN / STRUCTURE


RHEDA 2000 / RHEDA CITY

Top down procedure → rail comes early

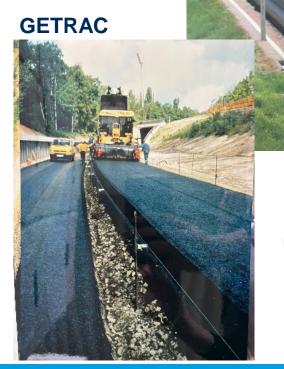
- Make / lay out track panel
- 2. "Roughly" adjust track panel
- Place reinforcement (if applicable) and formwork
- 4. Adjust track (rail) in final position
- Pour concrete slab

GETRAC

Bottom up procedure → rail positioning comes last

- Lay asphalt base layer(s)
 (vertically in maximum precission)
- 2. Lay out sleepers
- Place rails (on sleepers)
- 4. Align track laterally (final alignment)
- Install fixation blocks

RAILONE BALLASTLESS TRACK INITIAL INSTALLATION PROCESS


RHEDA 2000

Portals/Frames for track adjustment

Concreting with pump at parallel road

Quite mechanized process with standard road and rail equipment

EXAMPLE RHEDA 2000 & GETRAC LONG RAIL LOGISTICS (NON RAIL BOUND)

Construction with short temp. rails → late long rail installation

Construction with long, final rails → early long rail installation

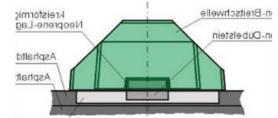
EXAMPLE GETRAC TRACK RENEWAL

Removal of damaged track

EXAMPLE ASPHALT HIGH PRECISSION PAVING

Paving new asphalt (surface) layer in max. accuracy Standard road installtion process

EXAMPLE GETRAC A3 TRACK PANEL INSTALLATION


Early delivery

Supply from parallel track/road

EIFFAGE A

EXAMPLE RHEDA 2000 / RHEDA CITY TRACK SUPPLY AND PLACING

EXAMPLE RHEDA 2000 TRACK PANEL INSTALLATION

For tight site conditions

E.g.:
Old tunnel with small tunnel cross section

EXAMPLE RHEDA 2000 TRACK PANEL INSTALLATION

For tight site conditions E.g.: Modern single line tunnels

VISION: GETRAC (AND RHEDA2000?) TRACK PANEL INSTALLATION WITH TRACK LAYING MACHINE

Portal cranes

EXAMPLE GETRAC TRACK POSITIONING

Use aligning/survey and poistioning kit of tamping machine

Note:

Vertical alignment (mostly) given from high asphalt accuracy

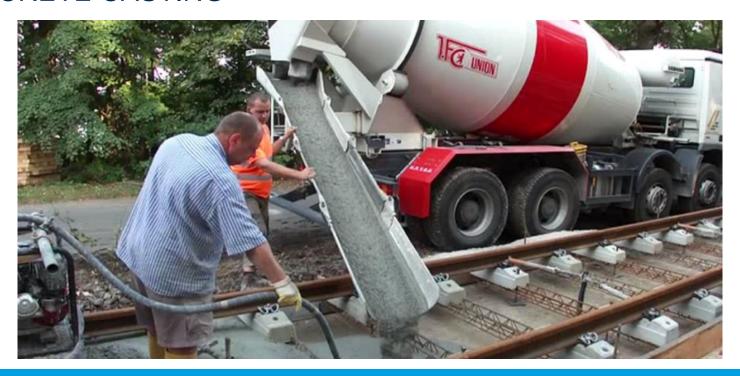
EXAMPLE RHEDA 2000 TRACK POSITIONING

Lifting & "Rough Positioning" Machines → fast, effective and accurate

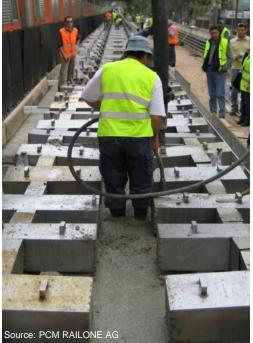
Source: PCM RAILON

EXAMPLE RHEDA 2000 / RHEDA CITY TRACK ADJUSTMENT

Simple and robust Integrated or reposishionable spindles


EXAMPLE RHEDA 2000 / RHEDA CITY TRACK ADJUSTMENT (UNDER MOVING WHEEL)

Standard traffic (20 to): Mainly for on site logistic Tram systems:
For permanet / ongoing operation
(with restrictions)


EXAMPLE RHEDA 2000 / RHEDA CITY CONCRETE CASTING

EXAMPLE RHEDA 2000 / RHEDA CITY CONCRETE CASTING

Concrete casting platform

Self propelled, fully integrated concreting unit

- Concrete handover
- Concrete casting & finishing
- Concrete curing

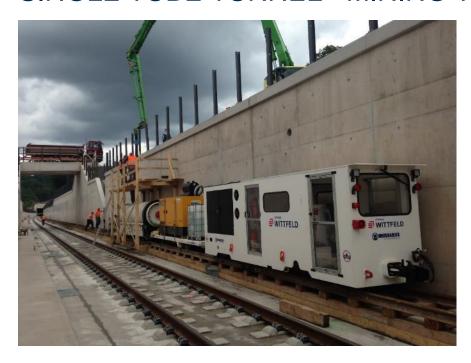
RHEDA 2000 CONCRETE LOGISTIC BASIC PRINCIPLE

Track 1 under construction

Track 2 for concrete logistic

Vice versa for second track with rail bound vehicles

RHEDA 2000 CONCRETE LOGISTIC **BASIC PRINCIPLE – TUNNEL MODIFICATIONS**



Work front (concreting)

RHEDA 2000 CONCRETE LOGISTIC SINGLE TUBE TUNNEL - MINING TRAIN

RHEDA 2000 (AND GETRAC) PERFORMANCE

In this manner the overall mean production speeds on the overall HSL Zuid project achieved by R2V amount to 20.9 m/hr for Tunnels, 24.1 m/hr for Viaducts & Bridges, and 26.2 m/hr for Embankment. In these figures an hour (hr) is part of a working shift which in principle is 8 hours of concreting work (up to a maximum of 10), and construction was in principle done during the week days. Note however that peak values were reached of 30.0 m/hr for Tunnels, 34.5 m/hr for Viaducts & Bridges and 38.3 m/hr for Embankment in optimal circumstances.

	Average	Max
Tunnel	20.9 m/hr (165 m/shift)	30.0 m/hr (240 m/shift)
Viaduct	24.1 m/hr (190 m/shift)	34.5 m/hr (275 m/shift)
Embankment	26.2 m/hr (210 m/shift)	38.3 m/hr (300 m/shift)

PCM RAILONE AG
Dammstrasse 5
92318 Neumarkt | Germany

www.railone.com

The content and the design of this file are literary property of the PCM RAILONE AG or a connected company. They are protected by copyright. No reproduction or distribution is allowed without the prior written consent of the right owner.