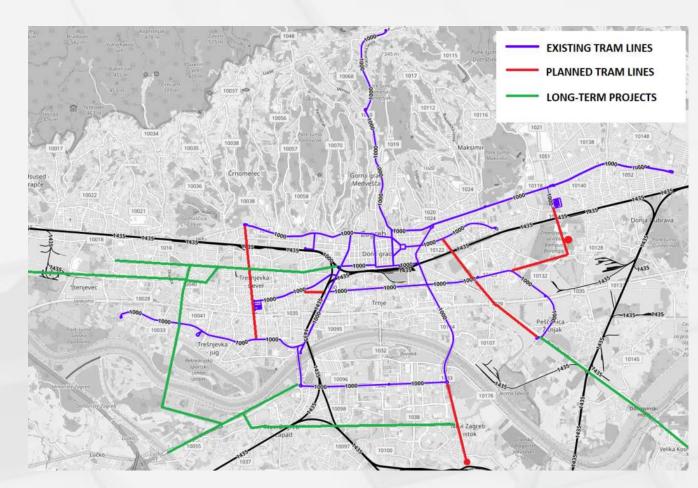
RAILWAY SLAB TRACK FORUM 2025

Zagreb 21-STT Slab Track Structure for Urban Tramway Construction

Franka Meštrović, mag.ing.aedif.


Overview

- Introduction
- Zagreb 21-STT slab track structure
 - Savska road test section
 - Sarajevska road implementation
- Future plans
- Concluding remarks

Zagreb Tram Network

- Total length 116,3 km
- 15 day and 4 night lines 180 trams on the network every day
- Substructure:
 - ballasted track (5,9%)
 - reinforced concrete slab track (94,1%)
- Continuous reinforced concrete slab 25 cm thick
- Discretely supported rails
- Sleeper spacing 1 m
- Track gauge 1000 mm

Zagreb Tram Network

2005 – rolling stock renewall – TMK 2200 introduced

Before: a wheel load of 20 - 25 kN per wheel

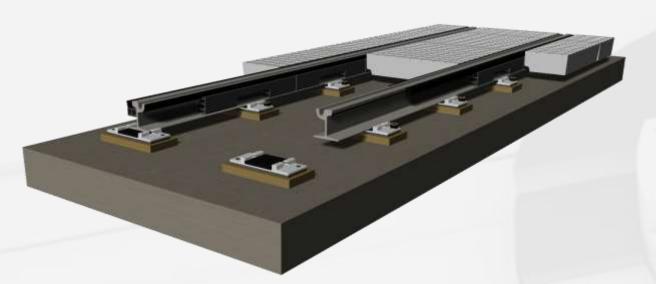
After: TMK 2200 tram - 33 kN per wheel

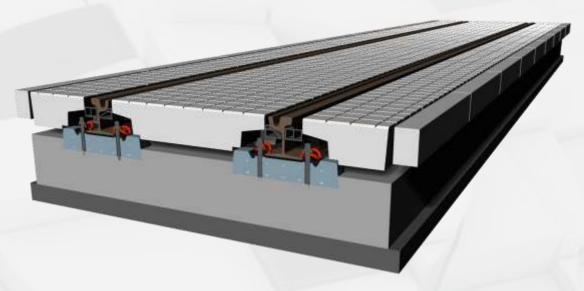
- At the level of track structure operation, the main changes include:
 - Increased axle load
 - Different load distribution on the structure
 - Changed geometry of the wheel-rail contact surface due to the different wheel profile

Zagreb Tram Network

- Track structure remained unchanged → observed effects include:
 - Increased rail wear
 - Accelerated degradation of track geometry due to failure of fastening systems and rail supports
- In 2013, infrastructure manager requested the **development of adequate fastening system** that would meet the requirements:
 - Traffic load (up to **15 million gross tons**)
 - Vehicle passage frequency (intervals <90 s)
 - Wheel loads
 - Track gauge
 - Strict tolerances related to track geometry

Franka Meštrović, mag.ing.aedif.

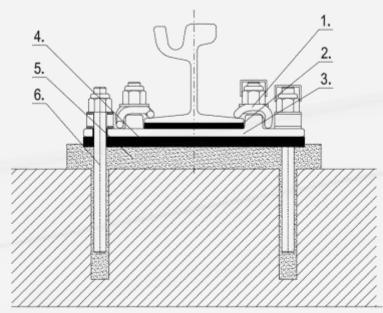


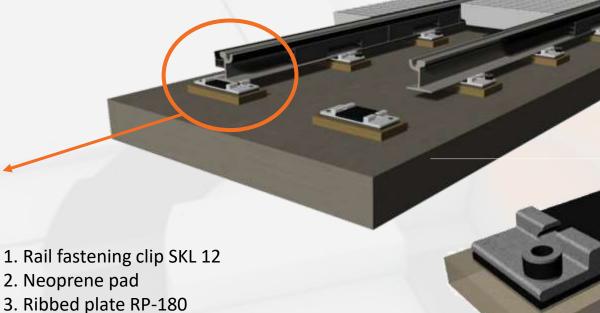

Zagreb Tram Network

- Faculty of Civil Engineering considered 5 fastening systems options
- 2 track structures were chosen for further development:

Zagreb 21-CTT ("Classic Tram Track")

Zagreb 21-STT ("Slab Tram Track")

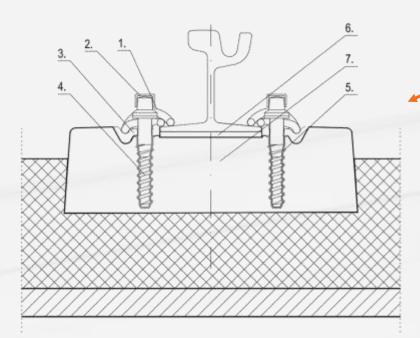

Zagreb 21-CTT structure

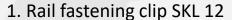

4. Ribbed plate with a vulcanized pad

6. Indirectly fastened anchor bolt

5. Bearing pad


- Slab track structure with **discrete sleepers**
- Suitable for: reconstruction of existing slab tracks + road/rail intersections + switch and terminus areas
 - Upgrade of Zagreb 3/2 PPE fastening system
 - Easily available, standard railway components
 - Reduction of noise and vibrations
 - Protection against stray currents

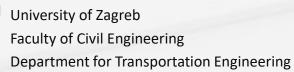

Zagreb 21-STT structure

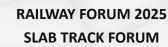

Slab track structure with prefabricated, double-block concrete sleepers

Suitable for open track segments where higher speeds are achieved

• Based on the Rheda 2000 track system

Adjusted track geometry, loads, vehicle speed





- 2. Protective plastic cap
- 3. Angle plate Wfp 14K
- 4. Tirfon screw Ss 35 with ULS7 washer
- 5. Tirfon screw dowel
- 6. Neoprene pad
- 7. Discrete concrete sleeper

Zagreb 21-STT structure

Slab track structure with prefabricated, double-block concrete sleepers

• Can be **pre-assembled** (**18 m** segments) with the corresponding fastening systems in the workshop, then delivered to the construction site

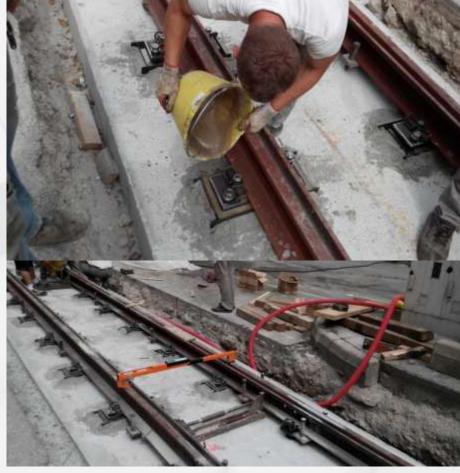
Developed tools for adjusting track alignment

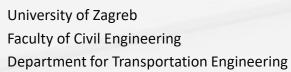
University of Zagreb

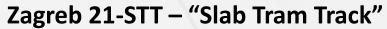
Savska road - test section

- 2014 3 test sections
 - 55 m Zagreb 3/2 PPE reference track
 - 59 m Zagreb 21-CTT "Classic Tram Track"
 - 53 m Zagreb 21-STT "Slab Tram Track"
- Followed by 11 years of periodic monitoring

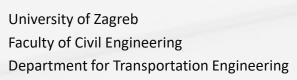
Savska road - test section


Zagreb 21-CTT – "Classic Tram Track"



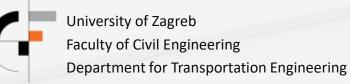



Savska road – test section



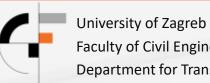
Savska road - test section

- Measurements were taken:
 - immediately after installation 8/2014
 - after 7 months of exploitation 3/2015
 - after 4 years of exploitation 10/2018
 (39,3 million gross tons)


- Visual inspection of the condition of the concrete slab, bearings, fastening components, rails, pavement, and elastomeric pads;
- Measurements of:
 - track geometry,
 - weld geometry,
 - stresses and deformations of the reinforced concrete slab → strain gauges
 - dynamic properties of the track (vibration damping) → accelerometers
 - noise generation

Savska road – monitoring results

Measurement	Results		
	PPE	СТТ	STT
Track geometry [increase in track gauge (mm)]	1,18	1,61	0,92
Max. longitudinal stresses (MPa)	3,33	2,26	0,86
Max. transverse stresses (Mpa)	2,25	1,14	1,01
Track Decay Rate (dB/m)	+	++	+++
Noise generation [L _{Aeq} (dB)]	87,3	86,3	84,4



Savska road – monitoring results

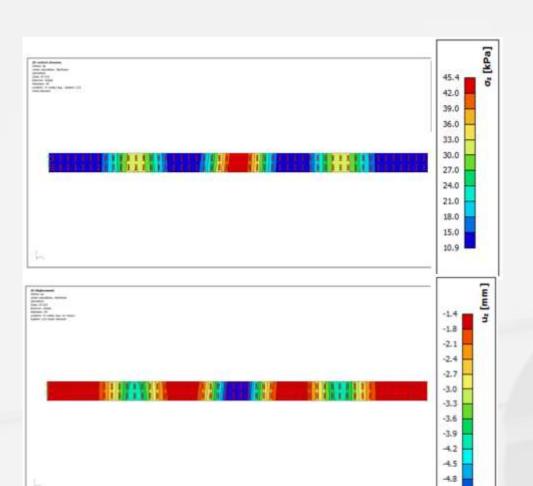
• Results for **Zagreb 21-CTT system were similar to those of Zagreb 3/2 PPE** – coincidental with the fact that CTT is an upgrade of Zagreb 3/2 PPE fastening system

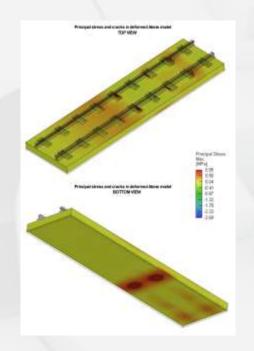
- Zagreb 21-STT exhibited the best results regarding:
 - track geometry
 - maximum stresses
 - noise generation

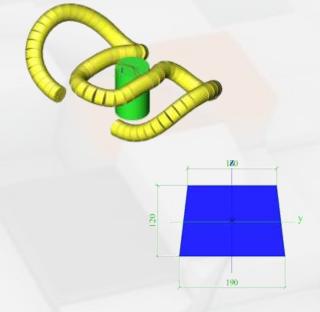
Property	Zagreb 21-CTT	Zagreb 21-STT		
Installation speed	=	+		
Cost	+	++		
Protection against stray currents	++	+		
Maintenance	=	+		
Durability	+	++		
Vibration propagation	+	=		
Noise propagation	+	+		
= property similar to the PPE system				
+ positive improvement compared to the PPE system				

Sarajevska road - implementation

- Started in 3/2025
- The first expansion of the tram network after 20 years
- **2,4 km** of tram track
- Min. radius 18 m
- Max. slope 35 mm/m
- 8 tram stops + new terminus
- 4 switches
- 3 track systems
 - Zagreb 3/2 PPE 2 %
 - **Zagreb 21-CTT 10 %**
 - **Zagreb 21-STT 88 %**



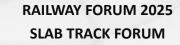




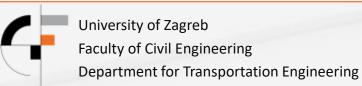
Sarajevska road - Calculation of the load-bearing capacity of the track structure

- Track structure with a reinforced concrete slab 23 cm thick and 200 cm wide
- The considered track section has a length of **40 m**
- Selected sleeper spacing 80 cm
- Bottom slab reinforcement B500B Ø14/20 cm
- Concrete slab reinforced with polypropylene microfibers (5 kg/m³)

Sarajevska road - implementation



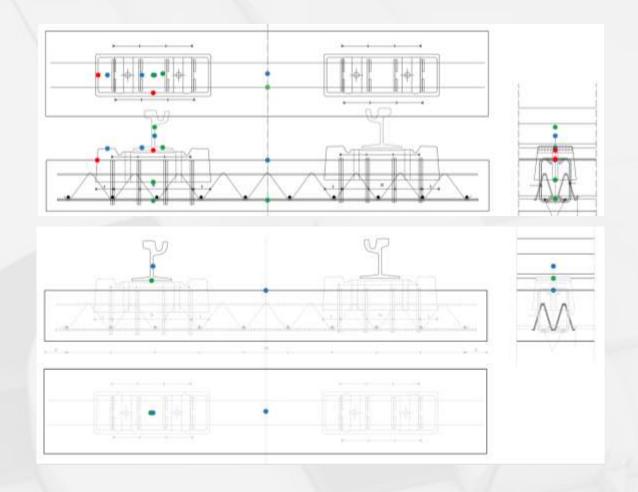
University of Zagreb Faculty of Civil Engineering **Department for Transportation Engineering**


Project URITMIS

Goal:

Implementation of digital twin technology for predictive maintenance of tram tracks in Zagreb

- Real-time vibration data is collected from an in-service,
 sensor-equipped tram vehicle operating on the Zagreb
 network
- Large datasets, machine learning techniques and digital twin technology → detection of irregularities and defects at various stages of degradation → predictive maintenance

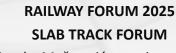

Future plans

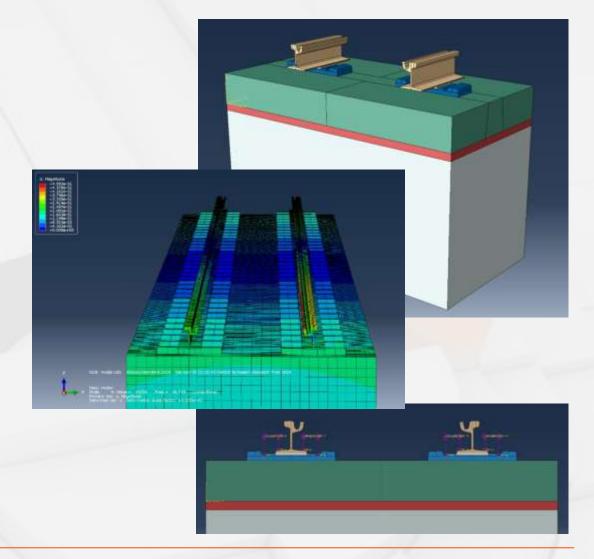
- Plan for continuous monitoring of Zagreb 21-STT slab track structure - SMART SLEEPER
- Accelerometers, strain gauge, velostat → input information for the numerical model
- Cross-section placement: mid-span + the bearing
- Appropriate track section for **sensor placement**

Measurements obtained with the in-service tram + track instrumentation > comprehensive insight into track behavior

Department for Transportation Engineering

University of Zagreb





Future plans

- Building a numerical model of Zagreb 21-STT track structure
- Model **verification** → currently in progress
 - **Parameter definition + Sensitivity analysis**
 - Slab thickness, stifness/damping, sleeper spacing...
- Model **calibration** → using measurements obtained from continuous monitoring
- Model **validation** → verification of the model's predictive capability under new conditions -> predictive maintenance

Concluding remarks

- Zagreb 21-STT system after 10 years of monitoring → durable and resilient system
- Prefabricated sleepers and modular 18 m segments → efficient installation and maintenance
- Supports heavy, frequent traffic → ideal for urban tram networks
- Successful deployment along Savska and Sarajevska roads → scalability and cost-effectiveness

- Digital twin integration and continuous monitoring (will) enable predictive maintenance
- Cost reduction, increased operational safety, improved comfort and reliability of transport

Thank You for Your attention! ©

Comments, questions, advice...

