

Static and Dynamic Investigation of Mass Spring System in Chile

Content:

- ▶ PROJECTS IN CHILE
- ▶ INTRODUCTION
- VIBRATION STUDIES
- STATIC AND DYNAMIC DESIGN
- CONSTRUCTION AND MANUFACTURING
- ▶ ON SITE MEASUREMENTS

Railway Forum Napoli 6-7 November 2025

COMPANY PRESENTATION

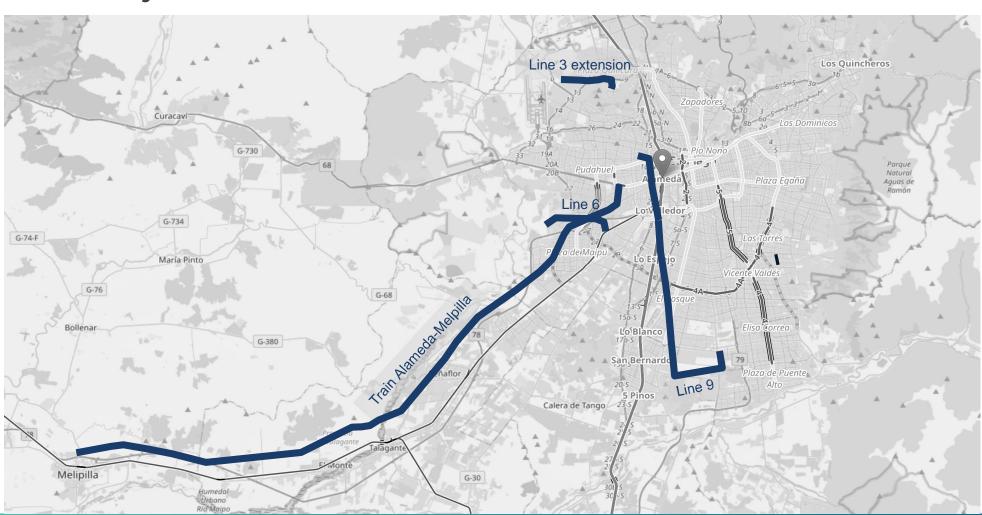
VCE is an internationally active engineering office with more than 350 staff members, its headquarters in Vienna and several branch offices abroad.

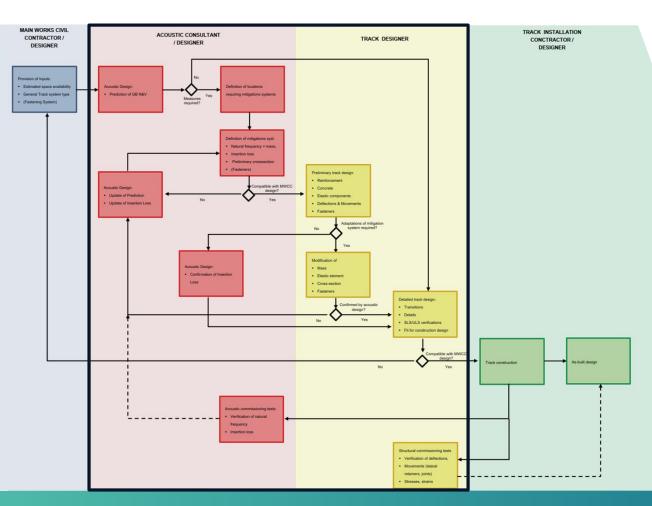
Fields of Activity of VCE:

- » Bridge Engineering
- » Structural Design Buildings
- » Industrial & Plant Construction
- » Civil Engineering & Tunnelling
- » General Consultant & Project Management
- » Technical and Financial Control
- » Site Supervision
- » Health & Safety Engineering
- » Traffic Design
- » Track Design
- » Structural Health Monitoring (BRIMOS®)

- » Environmental Sustainability Carbon Footprint
- » LCM Life Cycle Management
- » Accredited & Notified Body (BCT)
- » CSM Risk Management
- » Plant Data Management
- » Digital Engineering . BIM
- » Noise and Vibration Assessment
- » Environmental Protection
- » Acoustics
- » Research & Development

COMPANY PRESENTATION


COMPANY PRESENTATION


VCE Projects in Chile

Introduction

- ► CEN/TC 256/SC 1/WG 46 N 371
 - ► Auszug prEN 16432-4:2024 (E)
 - ► Figure A.1 Interfaces between the different designers

Vibration Prediction

Immissions

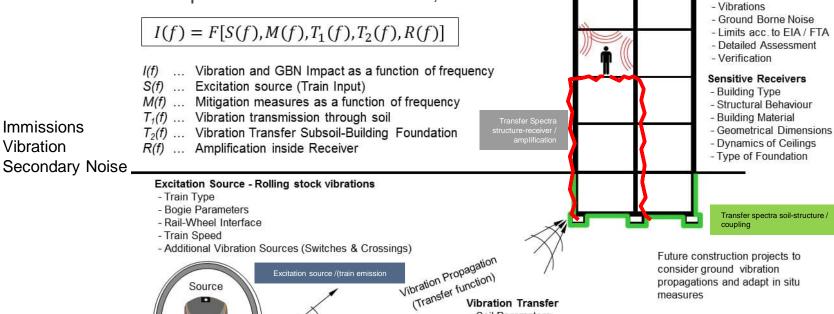
Vibration

Impact:

Semi-empirical forecast model FTA Transit Noise and Vibration Impact Assessment Manual, 2018

Insertion loss

Train Emissions


Insertion Loss

Soil Transmission F.

Coupling

Bldg Transmission F.

Safety Factor

Soil Parameters

- Distance Source-Receiver - Transfer Mobility

- Determination according to FTA on site

Sensitive Receivers

Potential reduction of Vibrations & GBN

Additional N&V reduction measure according to ER

- Standard low noise slab track

PROCESS OF GBNV

Methodology according to FTA

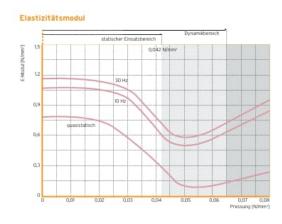
- 1. Early Identification of Sections without mitigation measures
- 2. Determination of Sensitive Receivers
 - Residential buildings
 - > Hospitals, schools, historic monuments
- 3. Measurements of vibration emission of the excitation source
 - Train emission data (Source spectra)
- 4. Vibration transmission through track system, tunnel and soil/rock
 - Clustering / sectioning
 - > Evaluation of subsoil parameters
 - Numerical Simulations to assess vibration transfer

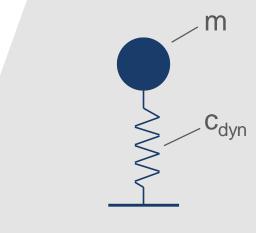
- 5. Vibration transmission through the buildings along the track
 - Structural / dynamic parameters of sensitive buildings (Transfer of Vibrations inside buildings)
 - Hospitals, schools, historic monuments
 - > Collection of building parameters on site
- 6. Prediction and verification of ground borne noise and vibration limits in the buildings
 - Operational data, track alignment (e.g. turnout locations)
 - > Verification of limit criteria for each sensitive receiver
- 7. Selection and extent of mitigation measures
 - Design of mitigation measures (structural & dynamic design, insertion loss)
 - Definition of mitigation lengths
 - Design of transition zones between standard track and upgraded track

Vibration Prediction

► Requirements for

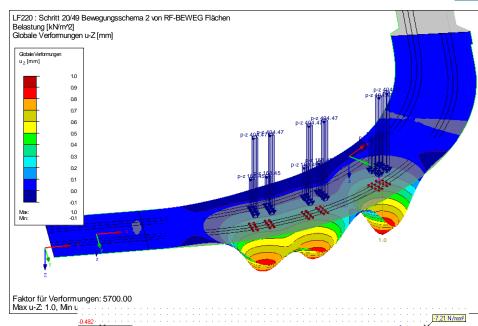
Vibration Protection Measures:

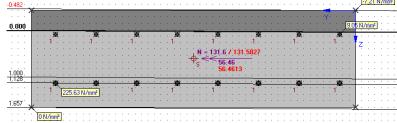

- ▶ Slab track with rigid single support points as reference system or in areas without requirements
- ▶ Slab track with highly elastic rail support points; resonance frequency 50 Hz < f0 < 60 Hz
- ▶ Mass-spring system on 40 mm surface bearings, resonance frequency f0 = 15.5 Hz
- ▶ Mass-spring system on 50 mm surface bearings, resonance frequency f0 < 13.5 Hz
- ► Additional requirements for **Insertion Loss**


Dynamic superstructure design mass-spring systems VCE

- Calculation of the natural frequency based on the theory of the single-mass oscillator
- Determination of the **dynamic Stiffness** c_{dyn}
 - ▶ Pressure of the elastic (surface) bearings from the calculation model
 - ▶ Dynamic bearing stiffness from the product data sheet or similar.

- Determination of the effective dynamic Masses m
 - Dead weight of track slab/rails/fastenings/track covering
 - Proportional to train mass (unsprung wheelset mass)

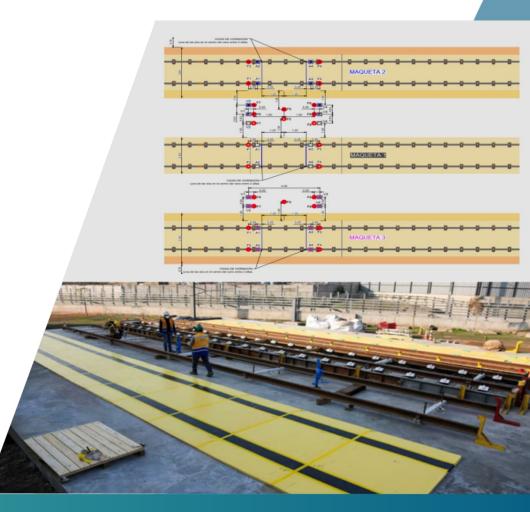



$$f_0 = \frac{1}{2\pi} \cdot \sqrt{\frac{c_{dyn}}{m}}$$

Static Calculation of the Structure

- ► Determination of the **internal forces** in the calculation model
- ► Selection of reinforcement quantity
- **▶** Verification
 - ► Load-bearing capacity (ULS)
 - Serviceability (SLS): Deformation & Crack Widths
 - ► Fatigue (FLS)
- ► Standards for structural verification
 - ► Actions/loads acc. EN 1991-2
 - ► Concrete structures acc. EN 1992-1-1, EN 1992-2
 - Properties of elastic bearings acc. EN 17682 (formerly DIN 45673-7)
 - ► Currently in progress: prEN 16432-4 "Bahnanwendungen Feste Fahrbahnsysteme - Teil 4: Spezielle Feste Fahrbahn-Systeme zur Vibrationsdämpfung"

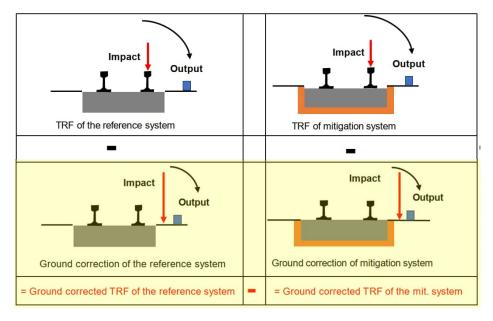
Construction and Manufacturing

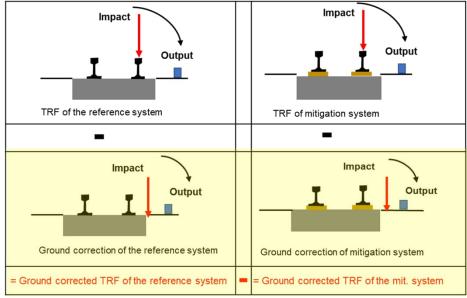

VCE W

- Verification before installation on specially manufactured mock-ups
- Measurement of the system natural frequencies on the loaded / unloaded system

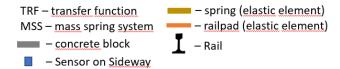
 DIN 45673-3 Measurement of insertion loss / left/right method

 Consider transmission admittance

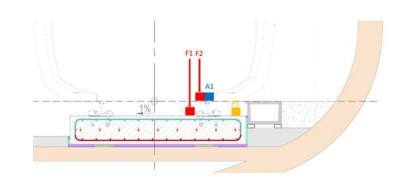

Measurment			
Position	Limit value	Limit value	
M01	f'0<[100-160Hz]	f0<[50-60Hz]	
M02	f'0<[100-160Hz]	f0<[50-60Hz]	
M03	f'0<[100-160Hz]	f0<[50-60Hz]	
M05	f'0<18,5 Hz	f0<15,5 Hz	
M06	f'0<18,5 Hz	f0<15,5 Hz	
M07	f'0<18,5 Hz	f0<15,5 Hz	
M08	f'0<18,5 Hz	f0<15,5 Hz	
М09	f'0<18,5 Hz	f0<15,5 Hz	
M10	f'0<18,5 Hz	f0<15,5 Hz	
M11	f'0<15,5 Hz	f0<13,5 Hz	
M12	f'0<15,5 Hz	f0<13,5 Hz	
M13	f'0<15,5 Hz	f0<13,5 Hz	

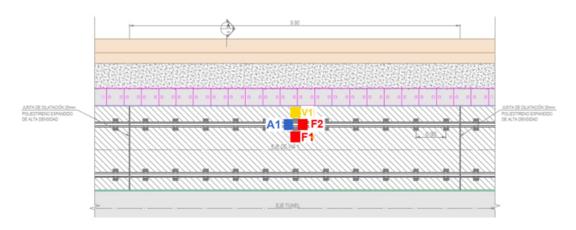

Measurement Results

Phase 3.1 – Calculation procedure of the insertion loss



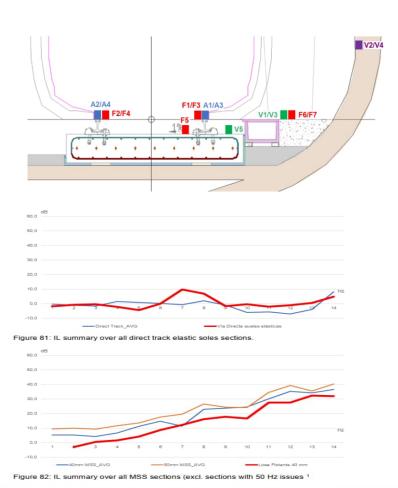
Insertion loss – Track with elastic soles

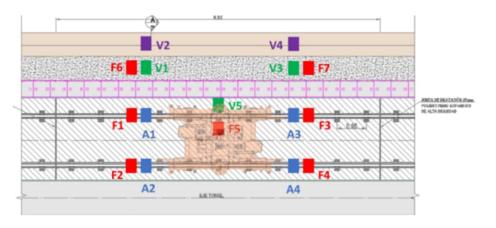

Insertion loss determined according to DIN SPEC 45673-3 (Left-Right approach)



VCE W

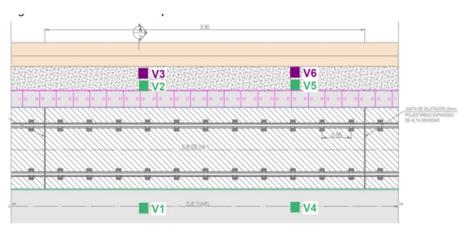
In Situ Measurements: Unloaded System




Measurement	natural frequency	natural frequency	
Position	[all signals]	[signals removed]	Limit value
M01	214,2	214,2	f0<[50-60Hz]
M02	172,9	172,9	f0<[50-60Hz]
M03	214,8	214,8	f0<[50-60Hz]
M05	12,5	12,5	f0<15,5 Hz
M06	14,6	14,6	f0<15,5 Hz
M07	14,3	14,3	f0<15,5 Hz
M08	12,7	12,7	f0<15,5 Hz
M09	12,6	12,5	f0<15,5 Hz
M10	13,2	13,4	f0<15,5 Hz
M11	11,7	11,7	f0<13,5 Hz
M12	12,7	12,7	f0<13,5 Hz
M13	11,7	11,7	f0<13,5 Hz

- Natural frequency
- Direct track with elastic soles shows unclear f₀
- ► MSS with 40mm fulfill the requirements
- MSS with 50mm fulfill the requirements

In Situ Measurements: Static Loaded System



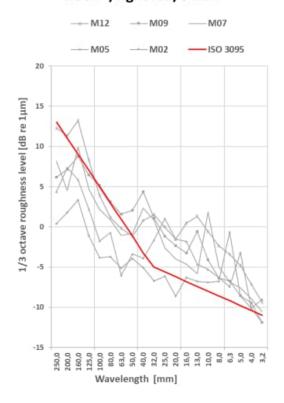
- Results improve when averaged
- ► Small spread among section of same type
- Ground correction was considered

In Situ Measurements: Trains Passings

- Results improve when averaged
- Small spread among section of same type
- Ground correction was considered


Figure 105: IL summary over all MSS sections

Measurement Results


Phase 3.3 – Rail Roughness

Track 2/left rail/0 mm

Track 2/right rail/0 mm

- ► ISO Requirement is generally fullfilled for wavelength < 40 mm
- Most roughness values are in a bandwidth ± 5 dB with a max diffrence of 10 dB
- Vibration due to rolling wheel is comparable and reliable

Findings

1 Vibration engineering and track construction planning are usually

carried out by different planners.

2 Early involvement of the civil engineering planners, vibration engineers, track construction planners and exchange of information between all parties involved is required.

3 Interfaces must be defined and the planning process is iterative.

6 However, particularly in the case of highly elastic rail support points, it has been found that these only exert their protective effect when trains pass by.

5 During the on-site measurements, it was demonstrated that all basic requirements were met.

4 During the mock-up tests and during the measurements on the unloaded and statically loaded system, the effect could not be proven due to a lack of pre-pressing.

Thank you for your attention!

Dipl. -Ing. Dr. Elisabetta Pistone Team Leader of the Baudynamik Group Interface Manager pistone@vce.at

Vienna Consulting Engineers ZT GmbH

Untere Viaduktgasse 2 1030 Wien

+43 1 897 53 39

www.vce.at