Digital Transformation of Railway Infrastructure

Stefan Damm, CEO DMA (Italy)
Jochen Nowotny, CEO tmc (Austria)

Track Machines Connected

Plasser_&Theurer

We V Railways

FOUNDED IN 2019

3 SITES Austria & India **EMPLOYEES** 96

The IT branch of world market leader Plasser & Theurer: High-tech in the Niche

Coming from Austria, the **#4 export** country in rail technology

You are no Beta-Tester: Quality Assurance on our machines and tracks

Software Suite tmOS understands Lifecycle Management, **Obsolescence and** Cybersecurity

DMA s.r.l. – Acurate & Reliable

Part of Plasser & Theurer since 2023

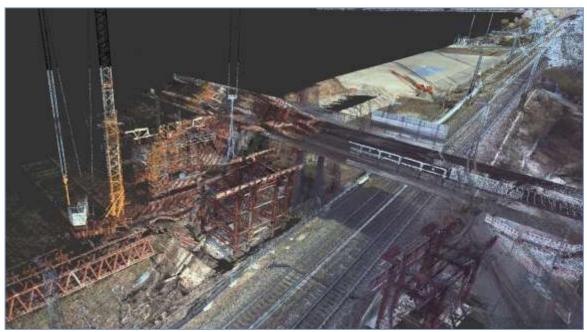
ENTIRE VALUE CHAIN

Design & Engineering

Manufacturing & Lifecycle

Integration & Installation

Plasser & Theurer

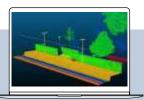

01 Digital Environmental Twin

High-precision colored Point Clouds

Project Offenburger Railway Line, Germany

Project Riedbahn Railway Line, Germany

Digital full-service process


Making a Point cloud useful

Track Survey

MEASUREMENT CARS, TROLLEYS, FLAT WAGONS

- 1. Central start & stop
- 2. Capture & process
- 3. Upload to backoffice

Generation of highly precise Point Cloud & Al-based Data Analytics

BACKOFFICE

- 1. Visualization
- 2. Al application
- 3. Analysis & measurements

Station (Trasse)	Beschreibung	Rechtswert	Hochwert	Höhe	Abstand (Streifen)	Höhendiff Z
	Beginn Kabelkanal links (KTB aux ESTW noch nicht umgesetzt) , b = 40 cm, Gleisa		5526469.48	87.8	-3.588	-0.124
	Kabelkanal Inks (KTB aus ESTW roch nicht umgesetzt) , b = 40 cm, Gleisabstand		5528495.57	87.68	-3.295	-0.249
50183.993725	Kabelkanal links (KTB aus ESTW noch nicht umgesetzt) , b = 40 cm, Gleisabstand	3483885.57	5526496.61	87.92	-4.509	-0.01
50185.101889	Kabelkanal links (KTB aus ESTW noch nicht umgesetzt) , b = 40 cm, Gleisabstand	3483885.59	5526497.72	87.9	-4.515	-0.029
50188.349948	Kabelkanal links (KTB aus ESTW noch nicht umgesetzt) , b = 40 cm, Gleisabstand	3463666.81	5526498.94	87.51	-3.323	-0.418
50208.160749	Ende Kabelkanal links (KTB aus ESTW noch nicht umgesetzt) , b = 40 cm, Gleisabs	3463667.09	5526520.751	87.4	-3.552	-0.511
50208.18051	Beginn Kabelkanal links (Neu), b = 40 cm, Gleisabstand XX m	3463667.08	5526520.771	87.4	-3.562	-0.511
50212.465404	Kabelkanal Inks (Neu), b = 40 cm, Gleisabstand 3,71 m	3463667.03	\$526525.061	87.5	-3.712	-0.406
10213.759901	Beginn Kabelkanal links , b = 30 cm, Gleisabstand XX m	3463007.53	5526526.341	87.55	-3.242	-0.357
50215.349205	Kabelkanal Inks (Neu), b = 40 cm, Gleisabstand 3.73 m	3463667.08	5526527.941	87.51	-3.73	-0.396
10222.892907	Kabelkanal links , b = 30 cm, Gleisabstand 3.28 m	3463667.71	5526535.471	87.52	-3.275	-0.38
50238.931198	Kabelkanal links . b = 30 cm, Gleisabstand 3.21 m	3463668.15	5526551.501	87.51	-3.209	-0.377

Transparent Data and Documentation

BACKOFFICE

- 1. Categorized Point Cloud
- 2. Inventory geo-data package
- 3. Updated drawings
- 4. Reports

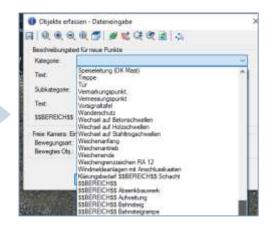
02 Inventory as a Service

Makes more use of the Point Cloud

Inventory as a Service

Doing the counting ...

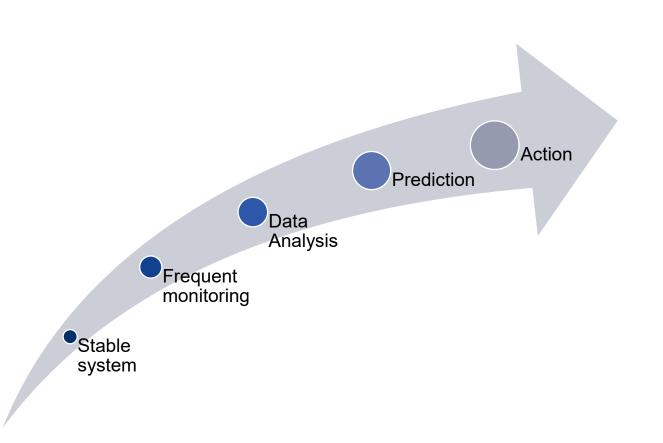
Automatic Detection in (driving-) images



Automatic extraction of individual objects as point cloud

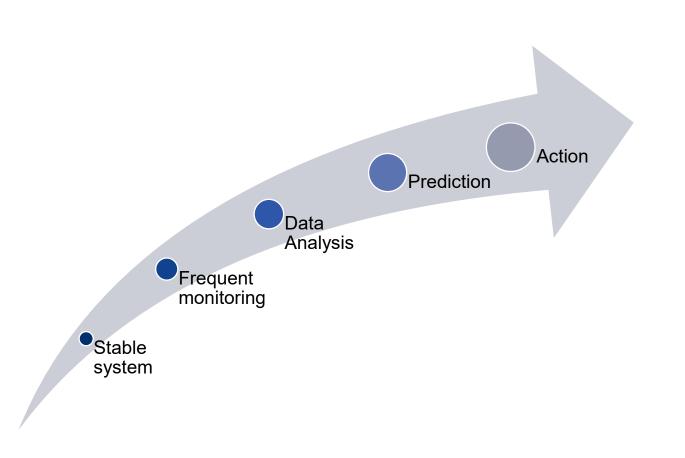
Station (Trasse)		Beschreibung	Rechtswert	Hochwert	Höhe	Abstand (Streifen)	Höhendiffere z
50156.878787	√	Beginn Kabelkanal links (KTB aus ESTW noch nicht umgesetzt), b = 40 cm, Gleisa	3463665.87	5526469.48	87.8	-3.588	-0.124
50182.981251	1	Kabelkanal links (KTB aus ESTW noch nicht umgesetzt), b = 40 cm, Gleisabstand	3463666.76	5526495.57	87.68	-3.295	-0.249
50183.993725	1	Kabelkanal links (KTB aus ESTW noch nicht umgesetzt) , b = 40 cm, Gleisabstand	3463665.57	5526496.61	87.92	-4.509	-0.01
50185.101869	1	Kabelkanal links (KTB aus ESTW noch nicht umgesetzt), b = 40 cm, Gleisabstand	3463665.59	5526497.72	87.9	-4.515	-0.029
50186.349948	1	Kabelkanal links (KTB aus ESTW noch nicht umgesetzt), b = 40 cm, Gleisabstand	3463666.81	5526498.94	87.51	-3.323	-0.418
50208.160749	1	Ende Kabelkanal links (KTB aus ESTW noch nicht umgesetzt), b = 40 cm, Gleisabs	3463667.09	5526520.751	87.4	-3.552	-0.511
50208.18051	1	Beginn Kabelkanal links (Neu), b = 40 cm, Gleisabstand XX m	3463667.08	5526520.771	87.4	-3.562	-0.511
50212.468404	J	Kabelkanal links (Neu), b = 40 cm, Gleisabstand 3.71 m	3463667.03	5526525.061	87.5	-3.712	-0.408
50213.759901	J	Beginn Kabelkanal links , b = 30 cm, Gleisabstand XX m	3463667.53	5526526.341	87.55	-3.242	-0.357
50215.349205	1	Kabelkanal links (Neu), b = 40 cm, Gleisabstand 3.73 m	3463667.08	5526527.941	87.51	-3.73	-0.396
50222.892907	1	Kabelkanal links , b = 30 cm, Gleisabstand 3.28 m	3463667.71	5526535.471	87.52	-3.275	-0.38
50238.931196	J	Kabelkanal links , b = 30 cm, Gleisabstand 3.21 m	3463668.15	5526551.501	87.51	-3.209	-0.377

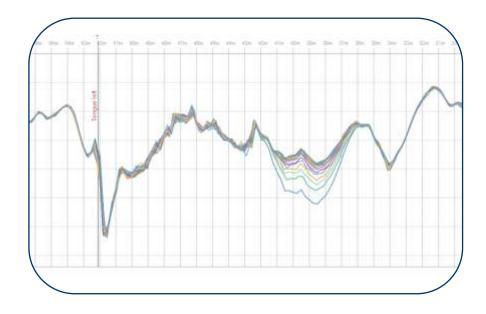
03 Slab-track Measurements


Geometric stability offers prediction based on micro-changes

Slab-track Measurements

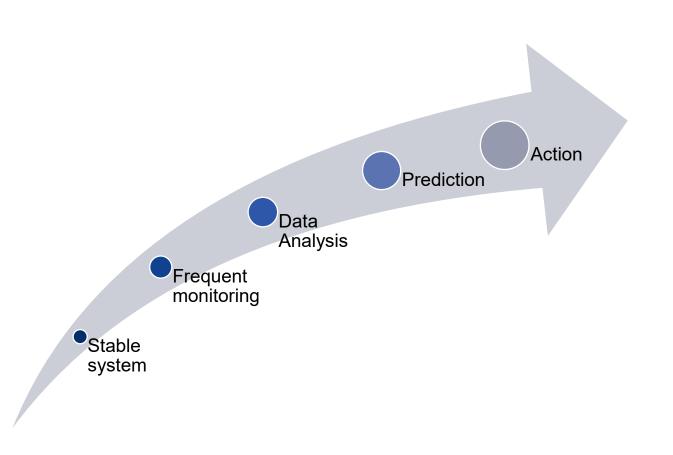
Track Geometry: minimum settlement and deformation


The slab track system ensures exceptional geometric stability over time, minimizing settlement and deformation compared to ballast track.



Slab-track Measurements

Track Geometry: subtle trends allow for prediction


By increasing measurement frequency, even subtle trends in track geometry can be identified before they evolve into faults.

Slab-track measurements and inspections

Track Geometry: patterns for future deterioration

Through data analysis and predictive insights, each measurement becomes a signal of the track's future condition revealing patterns and deviations.

04 Slab-track Inspection

2 Case Studies: EUROTUNNEL and ELIZABETH LINE

Case Study 1: Eurotunnel

Automated Video Inspection

Infrastructure

- 50 km of railway running through an underwater tunnel
- 80 km of railway running in open-air sections

Track System

- Ballastless slab track used in all tunnel sections
- Analysis of 660,000 fasteners

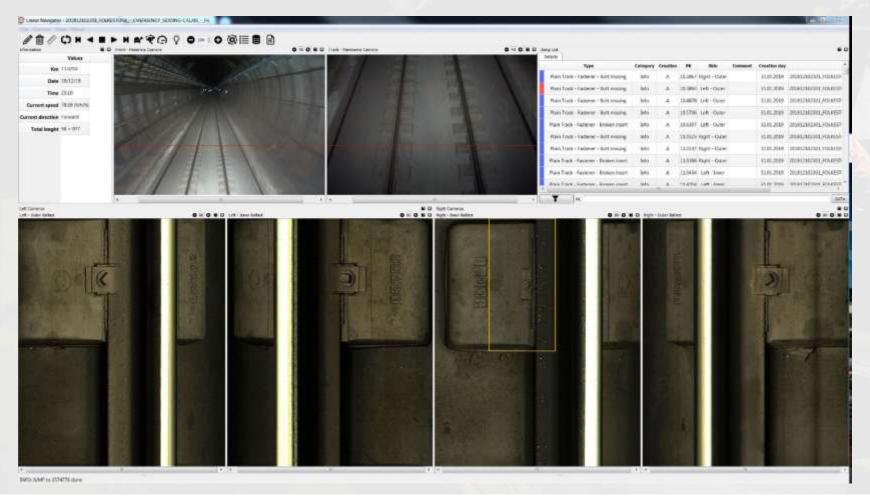
Monitoring

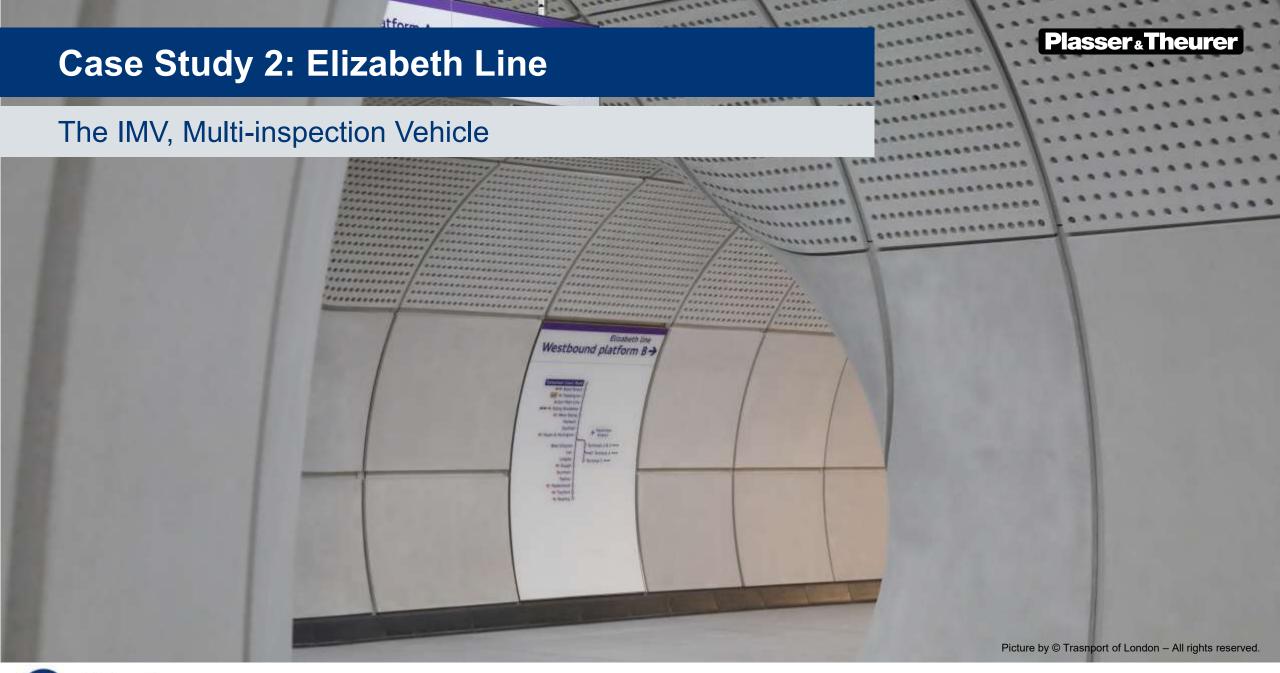
- 100km/h measurement speed
- 4 inspecting linear cameras

Case Study 1: Eurotunnel

Automated Video Inspection

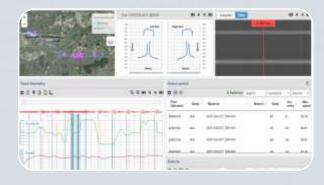
On a 2-week inspection basis


Identification success rate


Plasser_&Theurer

Case Study 1: Eurotunnel

Automated Video Inspection



Case Study 2: Elizabeth Line

The IMV, Multi-inspection Vehicle

Infrastructure

- 100 km total route, including 42 km of new twin tunnels under central London
- Designed to increase central London rail capacity by 10%

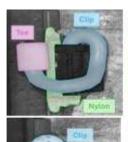
Track System

- Ballastless slab track throughout tunnel sections
- Floating slab track in sensitive areas to mitigate noise and vibration

Monitoring

- Routine track inspection with dedicated vehicle;
- TracksNet software suite for multi-source data collection and analysis.

Case Study: Elizabeth Line


Asset-specific defect identification – High-precision

DMA's Al-based

Components **Detector** & **Analyzer**

No defect found

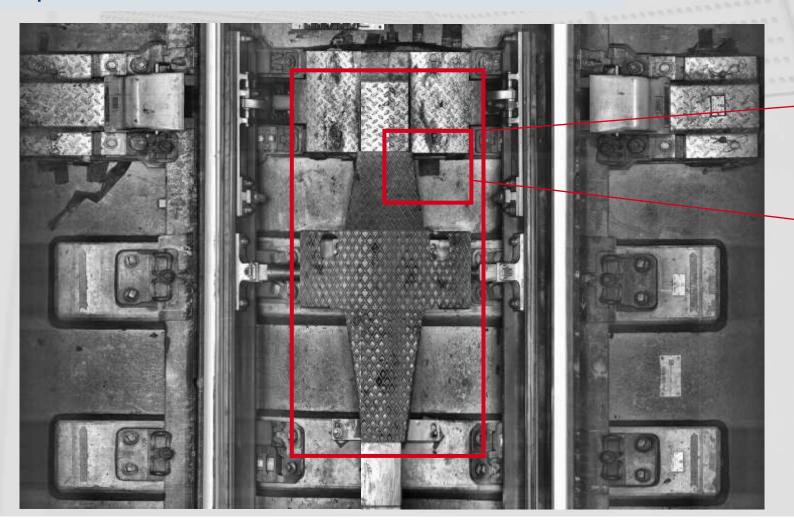
Valid

Missing toe Inverted clip

Defective

Crack detected

Valid


No defect found

Case Study: Elizabeth Line

Assets Virtual Inspection

Clip

Grid

05 One Stop Shop

We offer a System or "as a Service"

Recording Services

One Stop Shop offering

Riegl VMX System

- IMU (Inertial Measurement Unit)
- GNSS (Global Navigation Satellite System)
- DMI (Distance Measuring Instrument)
- 3 Lidars (360° 3D Laser scanner)
- 2 Colour cameras (high resolution RGB)

Fleet of 14 Measurement vehicles in Europe and US

- Fully equipped and calibrated measurement car
- Provided under full track usage approval management
- All DMA Geometry and Vision Inspection Systems operational
- Ultrasonics, Eddy Current and Georadar upon request

From a single system to a fully-fletched fleet

Plasser Diagnostics Systems

Self-propelled or towed measurement vehicles up to 160 km/h and stand-alone up to 350 km/h systems*:

- Track Geometry Measurement
- Turnouts and Crossing Measurement
- Rail Profile Measurement
- Corrugation Measurement
- 3rd (power) Rail Measurement
- Catenary Wear- and Position Measurement
- Clearance and Tunnel Inspection
- Track Component Video Inspection
- Top-of-rail and rail-web Video Inspection
- Catenary Video- and Infrared Inspection
- Driver's View Video Inspection
- Ultrasonic Rail Inspection
- Ground Penetrating Radar Track Inspection

Plasser & Theurer

Stefan DammCEO

M +39 342 7808 125 E-Mail sdamm@dmatorino.it

Jochen Nowotny CEO

Track Machines Connected Regensburger Strasse 3 4020 Linz | Austria

M +43 676 843243 600 E-Mail jochen.nowotny@tmconnected.com

