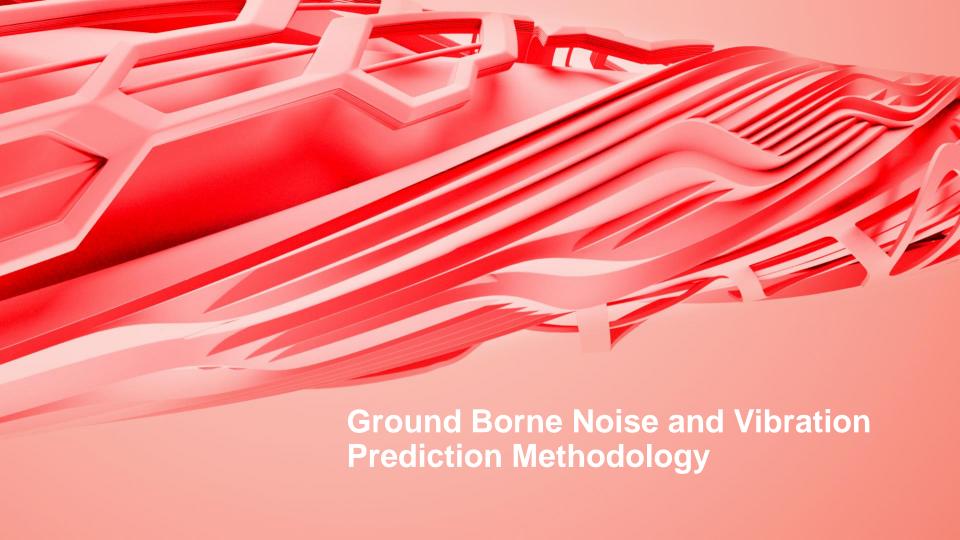


FCP

FCP is an internationally active engineering office with more than 350 staff members, its headquarters in Vienna and several branch offices abroad.

Fields of Activity of FCP:


- » Bridge Engineering
- » Structural Design Buildings
- Industrial & Plant Construction
- » Civil Engineering & Tunnelling
- » General Consultant & Project Management
- » Technical and Financial Control
- » Site Supervision
- » Health & Safety Engineering
- » Traffic Design
- » Track Design
- » Structural Health Monitoring (BRIMOS®)

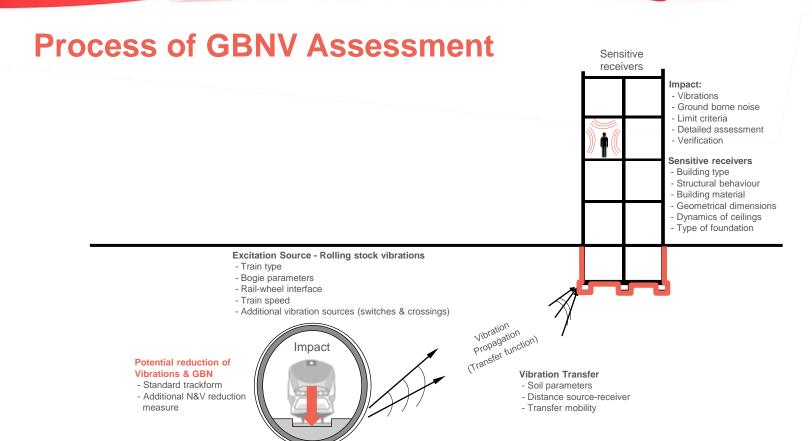
- » Environmental Sustainability Carbon Footprint
- » LCM Life Cycle Management
- » Accredited & Notified Body (BCT)
- » CSM Risk Management
- » Plant Data Management
- » Digital Engineering . BIM
- » Noise and Vibration Assessment
- » Environmental Protection
- » Acoustics
- » Research & Development

Company Presentation FCP

Ground Borne Noise and Vibration Assessment

Why?

- Avoid annoyance of residents due to noise & vibration impacts in urban areas
- Protection of sensitive receptors (e.g. sensitive equipment of hospitals, labs, ...)
- Protection of cultural heritage and monuments
- Increase the acceptance of public transport, particularly in urban areas


How?

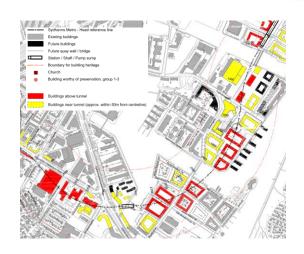
- Definition of the limit criteria (Human perception in buildings, Historic objects, Sensitive equipment
- Assessment and evaluation of the future noise and vibration impact
- Selection of suitable mitigation measures
- Dynamic design
- Verification of the effectiveness

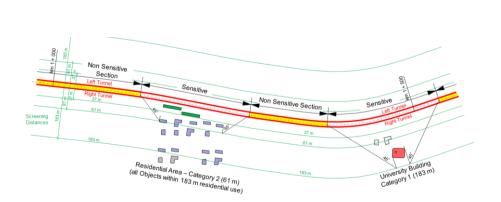
FCP

Basic requirements for reliable N&V Assessment

- Accepted methodology (e.g. international methodology according to FTA)
- Consideration of sensitive receivers, including their structural dynamics, vibration behaviour and building use
- Vibration emission (source) and vibration transfer needs to be determined according to the local conditions (measurements or reliable simulations)
- Noise and Vibration prediction needs to be performed in frequency domain (single value prediction is not sufficient to select mitigation measures properly)
- Mitigation measures to be selected according to the results for each relevant sensitive receiver > section-wise selection of optimized mitigation measures
- Method and each step of prediction needs to be comprehensible

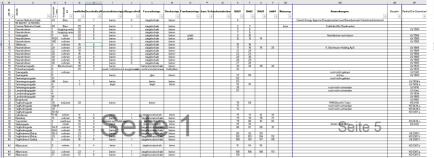
Process of GBNV Assessment


Methodology according to FTA


- 1. Early Identification of Sections without mitigation measures
- 2. Determination of Sensitive Receivers
 - > Residential buildings
 - > Hospitals, schools, historic monuments
- 3. Measurements of vibration emission of the excitation source
 - > Train emission data (Source spectra)
- 4. Vibration transmission through track system, tunnel and soil/rock
 - > Clustering / sectioning
 - > Evaluation of subsoil parameters
 - > Numerical Simulations to assess vibration transfer

- 5. Vibration transmission through the buildings along the track
 - Structural / dynamic parameters of sensitive buildings (Transfer of Vibrations inside buildings)
 - > Hospitals, schools, historic monuments
 - > Collection of building parameters on site
- Prediction and verification of ground borne noise and vibration limits in the buildings
 - Operational data, track alignment (e.g. turnout locations)
 - > Verification of limit criteria for each sensitive receiver
- 7. Selection and extent of mitigation measures
 - Design of mitigation measures (structural & dynamic design, insertion loss)
 - Definition of mitigation lengths
 - Design of transition zones between standard track and upgraded track

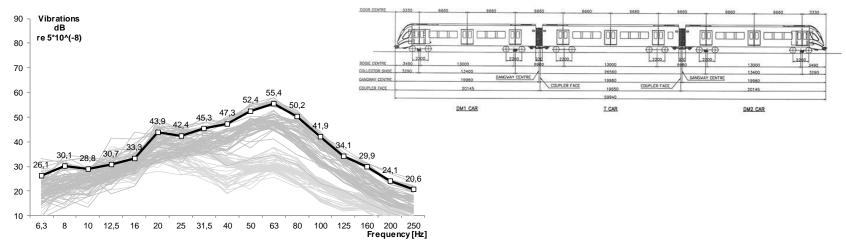
1. Early Identification of Sections without mitigation measures



2. Determination of sensitive receivers

Building survey

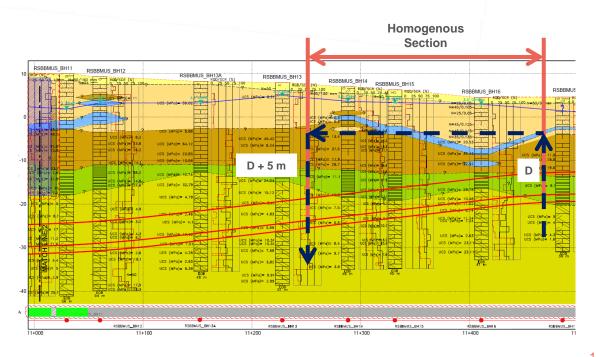
- · Structural / dynamic parameters of sensitive buildings (Transfer of Vibrations inside buildings)
- · Hospitals, schools, historic monuments
- Collection of building parameters on site
 - Building Material
 - · Age of Building
 - · Geometrical Dimension
 - · Type of Ceilings (Wooden, Reinforce Concrete precast / cast in situ) and geometrical dimension
 - Type of Foundation
 - · Number of floors / existence of basement
 - Photos (Façade, Outside, Inside)


Current									
No.:									
City:	ZIP:								
Street:		No.:							
Use:	Year of construction:								
Geometry									
Top height:	Eave height:								
Ground area:	Distance to track:								
View									
Picture of facade	Map								
		:)							
Building parameters									
Building parameters Building material:	Span width of ceilings:								
Building parameters Building material: No. of floors:	Type of ceilings:	:\							
Building parameters Building material: No. of floors: No. of basement:	Type of ceilings: Type of foundation:								
Building parameters Building material: No. of floors: No. of basement: No. of attic floors:	Type of ceilings: Type of foundation: Visible damages:								
Building parameters Building material: No. of floors: No. of basement:	Type of ceilings: Type of foundation:								
Building parameters Building material: No. of floors: No. of attit floors: Type of facade:	Type of ceilings: Type of foundation: Visible damages:								
Building parameters Building material: No. of floors: No. of atter floors: Type of facade: Window type:	Type of ceilings: Type of foundation: Visible damages: Roof top:								

3. Measurements of vibration emission of the excitation source

Train Emission Data

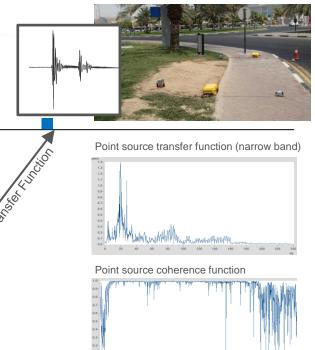
- Vibration measurements at real conditions on site reliable measurements necessary
- Comparable train data including simulations

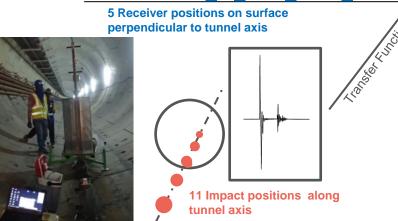


4. Geotechnical Assessment

Geotechnical clustering

- Soil layering
- · Vertical alignment of tunnel sections
- Homogenous soil parameters

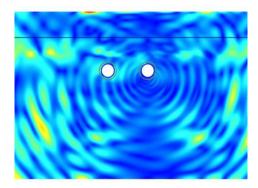




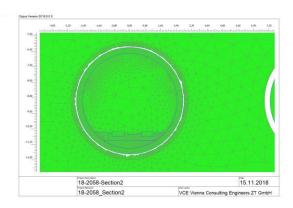
4. Vibration transfer through soil

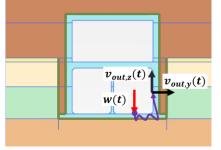
Vibration transfer - Measurements

- · Impacts in tunnel or on viaduct
- Simultaneous measurements of impact force and vibration response
- Transfer of impact points to a line source (acc. to rolling stock)



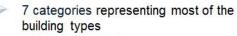
4. Vibration transfer through soil


Vibration Transfer

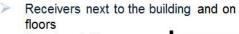

Numerical simulations

 Numerical simulations for every location to be investigated

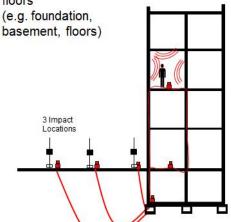
 $TF_{numerical\ simulation}$



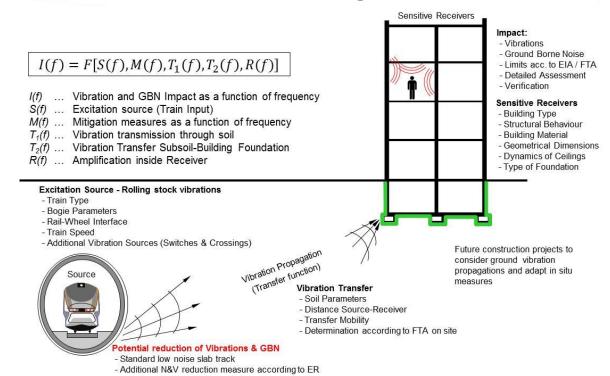
5. Vibration transfer through buildings


Structural / dynamic parameters of sensitive buildings

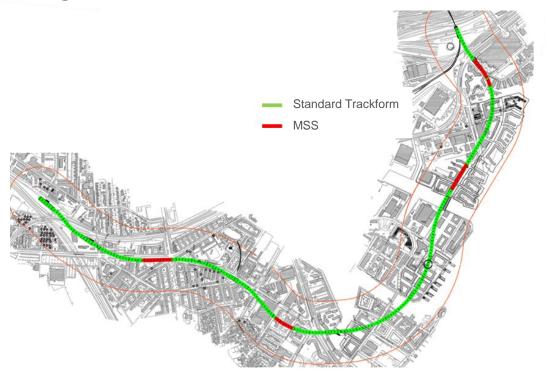
(Transfer of vibrations inside buildings)



- Buildings within influence zone of metro lines
- Impacts set outside the building

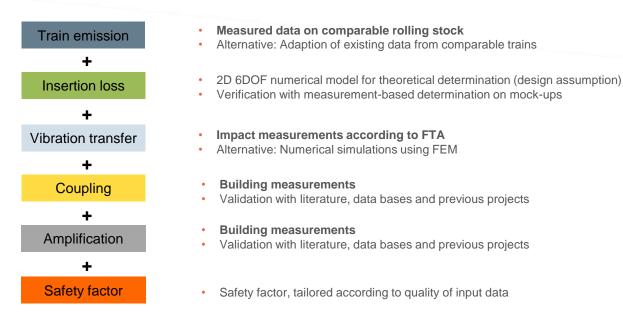


6. Prediction and verification of GBNV limits in the buildings

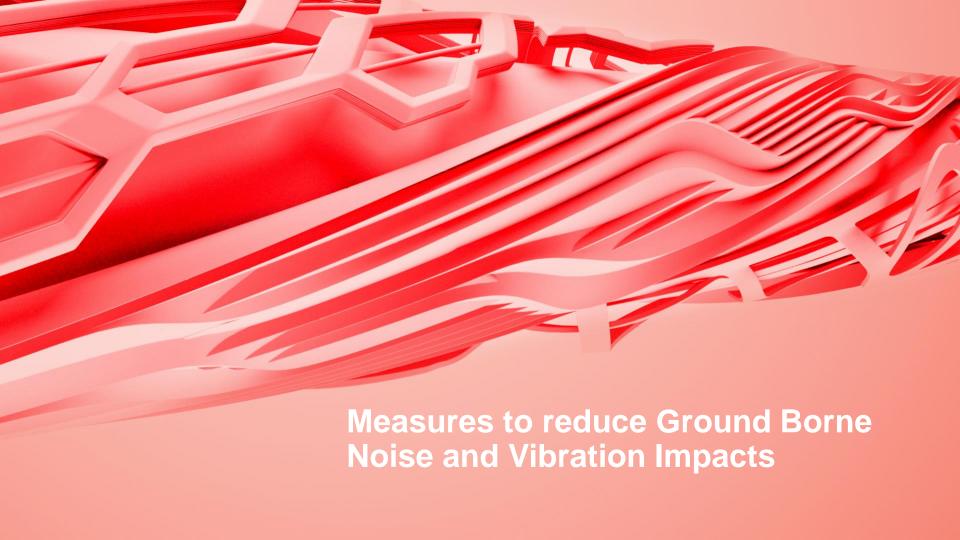

6. Prediction and verification of GBNV limits in the buildings

Verification of every sensitive object (noise and vibration limit criteria)

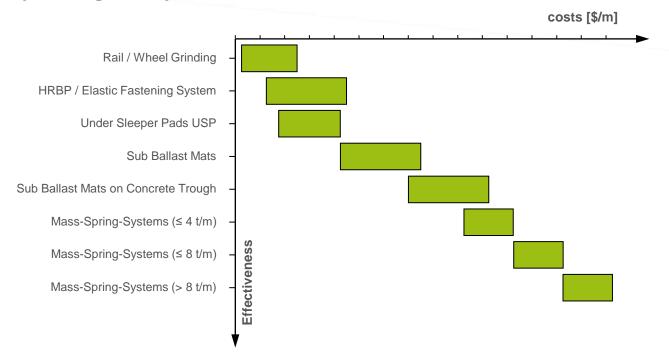
EP	LINE			Left Track																	VIP	PAT	LON	S								GROU	ND B	DRNE	NOISE				
LED	LINE			Left Track												VIBRATIONS One third octave bands (Hz.)															bands (Hz		NOISE						
								Sensitive Receiver (SR)										One thi		Al octave bands [Hz]										One to	id octave	Danies (HC)							
No	Section	Geological Section Type	Bottom Tunnel Depth [m]	Oli Start Oli En	Section i Length [m]	SR-ID	Use	Horizontal Distance SR to track [m]	Tunnel depth at SR [m]	Slant Distance to SR [m]	Building Category	Land Use Category			Limit tv [d8 re Sx10^(-8)]		10 12	1 19	20 2	6 92	40 6	50 es	80 1	100 12	E 160	BUM Lv(d) re 6x10*(8))		10 1	2 18	20	26 9:	40	60	es 8	100	126	160 Edi	ALA LAIbm BA] (dBA)	
1	No HMSS RS-AP-TO			-12-842 -12-28 -12-289 -12-08			no building						ves																										
3	No HMSS			-12-084 -6-983	5108																																		
5	RS-00-TO No HMSS	SL	19	-6-981 -6-927 -6-927 -5-817		RS-00-a	Commercial	100	20.4	102	CATIC	Cat 3	yes	16.1	69.1	40.0	50.5 54	L7 55.9	44.8 3	3.7 26.5	23.0	17.6 25.5	24.5	18.4 20	0.5 16.0	50	-10	-14.0	4.1 5.5	0.4	-5.1	1.7 -5.1	-6.7	5.3	8.1 5.2	10.3	8.7 1	6 -24	
6	RS-01 TO	SL	21	-5-813 -5-669	150	RS-01-a	Commercial	94	18.7	96	CATIC	Cat 3	yes	16.1	69.1	40.0									0.5 16.0		-10										8.7 1		
7	RS-01 BS-02	SL SL MS	21	-5-663 -5-540 -5-548 -5-250		RS-01-b	Commercial no building	0	21.4	21	CATA	Cat 3		0.0	69.1	40.0	46.7 53	3.8 53.6	50.0 4	5.7 41.3	37.6	38.8 31.0	24.1	26.2 28	8.0 18.9	58	-11	-17.8	-5.0 3.2	5.6	6.8	8.1 9.1	14.5	10.8	7.7 13.1	17.8	11.7	12 -18	
9	RS-03	MS_RUS	29	-5-250 -4-255	995	RS-03	Office	0	28.7	29	CATA	Cat 3		0.0	69.1	40.0									5.6 5.8		-17		43 -33									4 -26	
10	RS-08 RS-04	MS_RUS SL_MS	29 25	-5-250 -4-251 -4-255 -4-126		RS-04 RS-04	Commercial	1	26.6	27	CATE	Cat 3		0.0	69.1 69.1	40.0									8.4 -4.5		-4		4.0 11.0 7.1 21.6									10 -20	121
12	No HMSS	3 CM3	25	-4-124 -3-668	456	K5-04	Commercial		40.0	27					69.1	20.0											,												151
13	RS-05 RS-06	MS_RUS SL_MS	30 22	-3-668 -3-455 -3-455 -3-060		RS-05 RS-06	Commercial Residential	0	28.4 22.1	28 22	CAT D	Cat 3 Cat 2		0.0	69.1 66.0	40.0 35.0									5.6 10.0 4.7 26.1												2.8 2		
15	No HMSS	21_M2	22	-3-069 -2-876		K5-06	Kesicential	0	22.1	22	CALC	Cat 2		0.0	86.0	89.0	59.9 M	L3 67.6	35.5 8	8D 812	27.5	289 84.2	38.0	36.6 34	4.7 29.1	70	•	-4.5	8.5 17.2	11.1	-0.8		-0.3	18.9	1.6 28.1	24.5	18.8		106
16	RS-07-TO No HMSS	SL	18	-2-876 -2-726 -2-726 -2-530		RS-07-a	Commercial	116	17.1	117	CAT D	Cat 3	yes	21.4	69.1	40.0	41.3 46	5.4 50.2	56.9 4	7.7 38.8	27.3	18.2 15.3	11.1	10.8 17	2.6 7.8	59	-11	-23.1	12.4 -0.2	12.5	8.9	6.6 -4.3	-6.1	4.9	5.3 -2.4	2.4	0.5 1	15 -25	
17	No HMSS RS-07	SL	19	-2-726 -2-550 -2-530 -1-650		85-07-b	Commercial	32	19.7	38	CATE	Cat 3		0.0	69.1	40.0	53.7 57	7.7 55.6	54.1 5	2.4 40.5	33.0	37.5 32.9	32.5	25.5 20	0.1 11.7	62	-7	-10.8	-1.1 5.1	2.7	13.6 1	5.3 10.4	13.3	12.7	6.1 12.5	10.0	45 2	3 -17	
19	RS-07	SL	22	-2-530 -1-690		RS-07-c	Commercial	12	22	25	CATE	Cat 3		0.0	69.1	40.0		7.7 55.6								63	-4		4.1 5.1								7.4		
20 21	RS-08 RS-09	MS_RUS MS_RUS	23 26	-1-691 -1-345 -1-345 -1-005		RS-08 RS-09-a	Residential Residential	0	22.9 25.9	28 26	CATIC	Cat 2		0.0	66.0 66.0	35.0 35.0		12 55.9								58	-8 -7	-12.7	-8.6 3.7 -7.6 5.5	4.2		3.7 -5.6			9.5 2.4	6.0 8.1	5.7 1	4 -21 5 -20	
22	RS-09	MS_RUS	26	-1-345 -1-005		RS-09-b	Institutional	6	32.3	33	CATG	Cat 3		0.0	69.1	40.0									2.2 -9.9	56	-14		12.3 -4.5										
23	RS-10 Michelreh	MS_RUS	27	-1-005 -0-076 -0-076 0+216		RS-10	Residential	20	29.1	35	CATIC	Cat 2		0.0	66.0	35.0	52.3 51	1.3 57.1	50.7 3	4.2 19.6	20.0	13.3 24.1	33.3	23.8 16	6.7 9.4	60	-6	-12.1	-7.5 6.6	6.3	4.6 -1	1.6 -8.5	-20.9	3.9	6.9 10.6	6.5	2.2 1	.16	
24 25	RN-01	MS RUS	29	0+218 0+466		RN-01	Residential		27.2	27	CAT D	Cat 2		0.0	66.0	35.0	40.5 40	13 56.6	68.0 5	5.7 41.0	32.5	21.1 19.2	25.2	21.4 11	5.6 10.0	69		-16.0	0.5 6.2	23.6	16.9	7.8 4.0	-3.2	-1.0	8.8 8.2	5.4	2.8 2	15 -10	248
26	8N-02	MS_RUS	32	0+466 1+161		RN-02-a	Residential	0	32.6	33	CAT D	Cat 2		0.0	66.0	35.0	48.5 48	3.3 56.6	68.0 S	5.7 41.0	32.5	21.1 19.2	25.2	21.4 19	5.6 10.0	69	3	-16.0	0.5 6.2	23.6	16.9	7.8 4.0	-3.2	-1.0	8.8 8.3	5.4	2.8		695
27 28	RN-02 RN-02-TD	MS_RUS MS_RUS	32 31	0+466 1+161 1+161 1+315		RN-02-b RN-02-b	Residential Residential	60 142	26.9 26.9	66 145	CAT A	Cat 2 Cat 2	ves	3.5 17.6	66.0 66.0	35.0 35.0									2.0 2.2 4.0 -5.8		-17		17.8 -6.6 25.8 -14.7									0 -25	
29	RN-02	MS_RUS	32	1+313 1+465	152	NA COLUMN	no building		20.5			Carra	70.5			3	31.7 20		30.0 2	,,, 10,,	13.0		12.0							-7.0	-113 -2	., -14-1		-14-3		-0.2	-22.2		
31	RN-03 No HMSS		31	1+465 1+507			no building		20.2	20																													
33	8N-04	MS_RUS	25	2+210 2+331		RN-04	Institutional	15	25.3	29	CATIG	Cat 3		0.0	69.1	40.0	47.7 46	44.4	51.5 3	7.7 43.5	48.8	28.0 21.0	15.5	14.3	3.8 -6.3	56	-13	-16.7	2.5 -6.0	7.1	-1.1 2	3.3 20.3	3.8	0.8	0.9 1.7	-6.4	-13.6	11 -19	
34	No HMSS BN-05	51	22	2+331 2+597		EN.OSa	Institutional	22	22.2		CATE	OUS		10.8	69.1	40.0										63			.14 92								.04 1	7 28	
35	RN-05	SL SL	22	2+597 2+918		RN-05-b	Institutional	72 37	22.2	75 43	CATF	Cat 3		0.0	69.1	40.0									0.0 -2.2 0.8 8.6		- 1		9.5 20.0										321
37	RN-05-TO	SL	17	2+918 3+070		RN-05-b	Institutional	128	22.2	130	CAT F	Cat 3	yes	24.0	69.1	40.0									2.8 -9.4		-14	-24.6	8.6 2.0	2.3	-0.6	.4 -3.2	3.9	-2.9 -1	3.2 -10.2	-7.4	-16.6		
38	No HMSS 8N-06	SL MS	28	3+070 3+281 3+281 3+466		RN-06	Commercial	108	30.6	107	CATE	Cars		0.0 8.7	69.1	40.0	49.4 50	00 69 2		27 200	200	226 176	17.4	261 20	0.1 4.7		-3	-160	02 126	14.0	40 .			**	10 12/		25 1	10 (20	
40	8N-07	MS_RUS	30	3+466 3+680	214	RN-06	Commercial	131	30.6	135	CAT F	Cat 3		15.8	69.1	40.0									7.4 -20.3		-20		9.9 -4.8										
41	No HMSS RN-08	SL	21	3+680 3+748		BN-08	Institutional	29	29.3	41	CATE	Cart R		0.0	69.1	40.0	97 0	7 556	541 5	24 405	200	275 270	22.5	25.5 20	0.1 11.7		.7	-10.0	4.1 5.1	9.7	126 1	2 104	122	127 1	61 121	10.0	46 1	13 :17	
43	8N-09	MS_RUS	31	4+140 4+649	509	RN-09	Office	20	28.2	35	CAT D	Cat 3		0.0	69.1	40.0	48.5 48	3.3 56.6	68.0 5	5.7 41.0	32.5	21.1 19.2	25.2	21.4 19	5.6 10.0	69	0	-16.0	10.5 6.2	23.6	16.9	7.8 4.0	-3.2	-1.0	8.8 8.3	5.4	2.8	15 -15	
44	8N-10 8N-11	SL_MS	26	4+649 5+024 5+024 6+200		RN-10 RN-11-a	Office	30 40	27 19.4	40	CAT E	Cat 3		0.0	69.1 69.1	40.0	51.0 55 53.7 53	57.1				34.5 36.5 38.7 35.6				62	-7		8.4 63		9.8 5		10.2		1.0 27.6		12.2 5	10 -10 15 -15	
46	RN-11 RN-11	SL	22	5+024 6+200 5+024 6+200		RN-11-a RN-11-b	Residential	40 35	22.2	41	CATE	Cat 3		0.0	69.1 66.0	35.0	53.7 57			2.4 54.1 2.4 40.5				25.5 20		63	4		41 51			1.9 16.4 1.3 8.4			6.1 13.1 6.1 12.1		4.5		
47	8N-11	SL	24	5+024 6+200		RN-11-c	Office	82	23	85	CATE	Cat 3		13.5	69.1	40.0	40.2 44					25.3 22.1				49	-20	-24.3				7.4 2.5			2.6 0.2			2 -28	
48	8N-11 8N-12	SL MS	24	5+024 6+200 6+200 6+630		RN-12-a RN-12-a	Residential Residential	28	23.8	33	CAT 8	Cat 2 Cat 2		0.0	66.0 66.0	35.0 35.0		1.7 63.1								69 67	3		5.9 12.6 1.3 12.1			7.9 3.8 5.9 8.1			4,4 -13 9,3 144		-13.7 2		1176
50	8N-12	SL_MS	24	6+200 6+630	430	RN-12-b	Residential	120	24.7	123	CAT 8	Cat 2		9.9	66.0	35.0	48.9 54	3 54.7	53.1 3	9.8 30.6	26.7	30.9 27.2	15.8	17.2 18	8.6 -8.6	59	-7	-15.5	45 45	8.7	1.0	1.6 -1.8	6.6	7.0	0.6 4.5	8.4	-15.9	5 -20	
51 52	RN-12 No HMSS	SL_MS	24	6+200 6+630 6+630 6+996		RN-12-c	Residential	49	24	55	CAT B	Cat 2		2.6	66.0	35.0	56.3 63	L6 62.0	60.5 4	7.1 38.0	34.1	18.3 34.6	23.1	24.6 25	5.9 -1.3	67	1	-8.2	2.8 11.6	16.1	8.3	5.5	14.0	14.3	6.7 11.4	15.7	-8.5	13 -12	430
53	8N-13	SL_MS	23	6+996 7+830	843	RN-13	Residential	112	22.7	234	CAT 8	Cat 2		8.7	66.0	35.0	50.1 55	.5 55.9	54.3 4	1.0 31.8	27.9	32.1 28.4	17.0	18.4 19	9.7 -7.4	61	-5	-14.3	-3.3 5.4	9.9	22 -	4 -0.6	7.8	8.2	0.6 5.3	9.6	-14.7 1	6 -19	
54	No HMSS RN-14-TO	51	18	7+839 8+420 8+420 8+572		8N-14	Office	88	16.7	10	CAT F	Cat 3		13.5	69.1	40.0									3.3 1.1												-6.1	10 (20	
55	No HMSS	ol.	18	8+420 8+572 8+572 11+59		nn-14	OHICE	68	16.7	30	OAT P	Cet 5	yes	13.5	69.1	-0.0	50.4 60	1.6 62.9	36.2 4	e.r 37.3	35.9	36.7 27.8	15.7	15.4 15	3.5 1.1	66	-3	-24.0	2.0 12.5	15.8	9.5	7,4	14.4	7.6	2.7 0.5	5.1	-0.1	-20	
57	RN-15	RUS	42	11:599 11:96		RN-15-a	Institutional	75	39.2	85	CAT G	Cat 3		8.3	69.1	40.0									6.6 -14.5		-38		15.6 -33.0										
58 59	RN-15 No HMSS	RUS	42	11+599 11+96 11+965 12+09		RN-15-b	Residential	38	41	56	CAT 8	Cat 2		0.0	66.0	35.0	29.9 20	12 32.2	37.9 2	6.8 17.0	14.8	18.4 13.5	2.4	-2.4 9	5.9 -17.0	40	-26	-34.5	28.6 -18.2	-6.5	-12.0 -2	13.7	-5.9	-6.7 -1	4.0 -15.1	-4.2	-24.2	1 -34	
60	8N-16	RUS	35	12+095 12+70	613	RN-16	Residential	0	35.5	36	CAT 8	Cat 2		0.0	66.0	35.0	32.0 33	3.3 34.2	37.9 2	6.8 17.0	15.4	21.6 17.3	6.7	-0.4 5	5.9 -16.6	41	-25	-32.4	25.5 -16.2	-6.5	-12.0 -2	5.2 -13.2	-2.6	-2.9	9.7 -13.6	-4.2	-23.8	3 -32	
61	No HMSS			12+708 13+69 ngth (left track) (n																																			



7. Selection and extent of mitigation measures



Summary


Ground-borne noise and vibration impact

Design of Vibration Mitigation Measures

Variety of mitigation systems

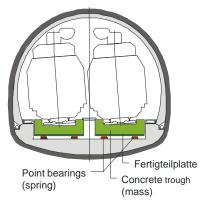
Design of Vibration Mitigation Measures

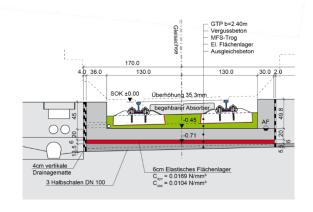
Dynamic and Structural Design Principles

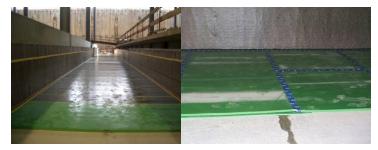
Dynamic Design - Definition Insertion Loss

- Definition of the necessary vibration reduction ("insertion loss")
 - Rolling stock, train speed, operation schedule
 - Track quality, safety margin
- Design of a system to fulfil the requirements of the insertion loss (mass, spring, damper)
- Selection of a suitable elastic element
- Coordination with the structural design

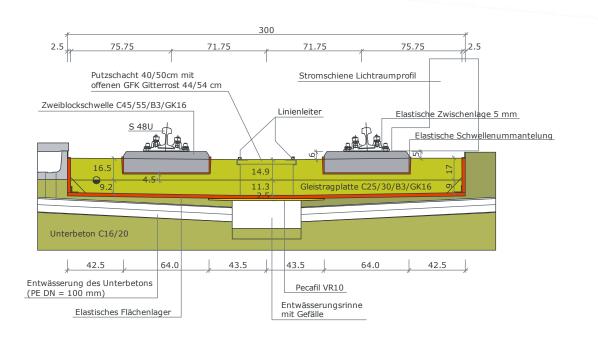
Structural Design

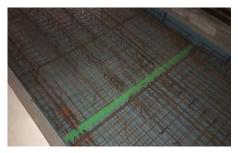

- Available / required space
 - Possible height of construction
 - Maintenance issues
- Loads
 - Vertical, Lateral, Temperature, etc.
- Maximum tolerable deflections
- Vehicle dynamics
 - Relative displacements
 - Transition zones
- Subgrade


Design Principles of Mass-Spring Systems (MSS)


MSS with Point Bearings

MSS with Full Surface Bearings

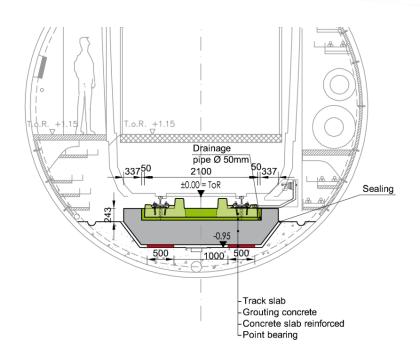


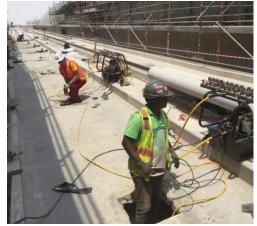


FCP

Vienna Urban Transport System / Metro

Mass-Spring-System with Full Surface Bearing $f_0 = 21.0 \text{ Hz}$





Metro Doha / Qatar

Mass-Spring-System with Point Bearings $f_0 = 6.0 \text{ Hz}$

Light tram Vienna / Austria

Mass Spring Systems with Full Surface Bearing

FCP

Selected References

Asia

- · China, Beijing, Courtyard Project, Metro Line 6, Vibration and Ground Borne Noise Assessment
- · China, Taiyuan, Metro Line 2, Trackform optimization
- · Qatar, Doha, Noise and Vibration Assessment and Track Design for Gold Line, Green Line, Red Line and Blue Line
- · India, Delhi Metro Rail Cooperation DMRC, Noise and Vibration Assessment for various lines
- India, Delhi Metro Rail Cooperation DMRC Delhi, Noise and Vibration trackform optimization and Check Engineer
- · India, NCRTC Delhi Meerut Corridor, Noise and Vibration Assessment and specification of mitigation measures
- · India, NCRTC Delhi Meerut Corridor, Dynamic Optimization of rail fastener
- · India, Ahmedabad Metro, Design of Mass-Spring System
- · India, Konkan Railways, Proof Check of Trackwork Design
- · Malaysia, Kuala Lumpur Singapore, High-Speed Line, Noise and Vibration Assessment in Tender Design
- · Turkey, Istanbul, Acibadem Hospital (Metro), Metro Line 4, Vibration and Ground Borne Noise Assessment

Africa

· Mauritius, Mauritius Metro Express Line, Phase 1, 2 and 3 Noise and Vibration Assessment

Europe

- Denmark, Copenhagen, Noise and Vibration Assessment, Metro, Cityringen, Branch off to Sydhavn
- Germany, Hannover-Berlin, VDE 4, Deutsche Bahn, Noise and Vibration Assessment
- · Germany, Stendal-Uelzen, Deutsche Bahn, Vibration Assessment
- Germany, Brennernordzulauf, Deutsche Bahn, Vibration Assessment
- Germany, Stuttgart 21, Deutsche Bahn, Vibration Assessment and Mitigation Verification
- Germany, VDE 8.1, Bamberg, Noise and Vibration Control during Construction Phase
- Germany, Köln Ost-West Achse, Noise and Vibration Assessment
- Austria, Vienna, Noise and Vibration Assessment and Track Design for various metro and light rail lines
- Austria, Tyrol, Noise and Vibration Assessment and Track Design for Austrian Federal Railways, High Speed Line Unterinntal

Australia

· Australia, Metro Melbourne, Vibration Mitigation Design of Trackform

South America

- Argentina, Buenos Aires, Vibration and Ground Borne Noise Assessment for Viaducto Ferroviario Elevado San Martin
- Chile, Santiago de Chile, Metro Line 3, validation tests of the vibration control system on site
- Lima, Peru, Metro Line 1, Vibration and Ground Borne Noise Assessment

