Modern Turnout Technology for High Speed

DI Heinz Ossberger
Head of Corporate Engineering and R&D
voestalpine VAE GmbH

Warszawa, 1st July 2014
Content

General

High Speed Turnout Geometry

Switch

Swingnose Crossing

Conclusion
Content

General

High Speed Turnout Geometry

Switch

Swingnose Crossing

Conclusion
HIGH SPEED
The VAE Group as a Main Supplier of High Speed Turnout Technology Systems Worldwide

VAE - High Speed Turnouts used in:
Germany, Austria, Switzerland, Finland, Netherland Turkey, Spain, Taiwan, China, Korea
Primary Goal of LCC Optimisation

Identification of the optimal component on the base of LCC
Three Key Factors for a Successful High Speed Turnout Technology

Minimizing of Forces
- Turnout Geometry
- Elasticity
- Inclined Running Table

Most Suitable Turnout Component Design
- TOZ Switch
- Swingnose Crossing
- Roller Systems

Robust Drive Locking and Detection System
- Hydrostar DLD System

voestalpine VAE GmbH
Content

General

High Speed Turnout Geometry

Switch

Swingnose Crossing

Conclusion
SYS File Railway Vehicles Model
Highspeed Crossover
Gallese/Italy

UIC60-7500/3000/15000-tg 0,026
Lateral forces

At the wheel rail interface with a speed of 160 km/h
Results in Comparison with the Parabolic Geometry Turnout tg 0.022

- Maximum lateral forces are reduced by 25%
- Maximum accelerations are reduced by 36%
Measuring Locations on the Vehicle

Motrice ETR 500 Politensione 404 501-2

Y31 Y41
Y32 Y42
Q31 Q41
Q32 Q42
Simulation-Measurements

Lateral forces: speed 178km/h, axle 3, deviating track
Content

General

High Speed Turnout Geometry

Switch

Swingnose Crossing

Conclusion
Switch Device
TOZ – Comparison to Standard Design
TOZ Load Rating Optimized Switch Rails

Advantages:
- Optimal combination between switchblade thickness and stockrail thickness
- Almost no gauge widening
- Additional thickness of the switchblade in the most critical area
- Standard set of sleeper and plates are suitable
- Prolonging the service life of the product due to more material. According Swiss/SBB findings twice the lifespan.
TOZ Load Rating Optimized Switch Rails

A TOZ Switch gives you double the Lifespan compared to a Standard Switch!

A TOZ Switch gives you double the Lifespan compared to a Standard Switch!

Technische Dokumentation

<table>
<thead>
<tr>
<th>Herausgeber (Federführung)</th>
<th>Beteiligte Dienststellen</th>
<th>Klassifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-AM-EB-FT (Fahrbautechnik)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inkrafttreten sofort</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weichen SBB IV, SBB IV/90 und SBB VI
Einführung von "Tragfähigkeitsoptimierten halben Zungenvorrichtungen TOZ"

4. Ergebnisse der Versuche mit hZV-TOZ

Im Jahre 1999 begonnene Versuche haben gezeigt, dass mit hZV-TOZ die Liegedauer im Vergleich zur bisherigen Bauart mindestens verdoppelt werden kann.

voestalpine VAE GmbH
iFAST
Elastic Inner Stock Rail Fastening with Pi Rolles

iFAST clip

PIROLL Tandem roller

PIROLL plate integrated roller system
iFAST with PIROLL
Inner side rail fastening and switch roller

Advantages:
- Easy assembling and disassembling procedure
- Spring can be preassembled
- Flat spring rate
- Piroll fully integrated in the plate
- Plastic rollers cannot damage the switch blade when wrongly installed
HIGH SPEED TURNOUTS AUSTRIA
Speed 230 km/h
Content

General

High Speed Turnout Geometry

Switch

Swingnose Crossing

Conclusion
Centro MN13 Crossing
Force Oscillation in relation to the Spring Rate
INNOTRACK –
Results SP3 Switches & Crossings

Results of demonstrator installation:

- Significant reduction of contact forces by means of KGO and optimized elasticity (soft pads) in S&C
- VAE S&C has the lowest vertical force for the crossing (T/O E454)
High Speed Turnouts with Rheda Classic - Germany
Swing Nose Crossings for High Speed Turnouts

SNX with Cast Manganese Cradle:
- Sole plate consisting of:
 - 1pc Cast Manganese Cradle
 - 3pc Cast Steel Cradle
- Point and Splice Rails – Profile 60E1
- Closure Rails – Profile 60E1
- Length: 25,940m
- Geometry: 1:32,05

SNX Characteristics with Cast Manganese Cradle:
- Sole plate consisting of:
 - 1pc Cast Manganese Cradle
 - 3pc Cast Steel Cradle
- Point and Splice Rails – Profile 60E1A1
- Closure Rails – Profile 60E1
- Length: 20,390m
- Geometry: 1:38,46
Swing Nose Crossings for High Speed Turnouts

SNX with Long Wingrails:
- Long Wing Rails made out of profiles 60E1 and 60E1A1
- Point and Splice Rails – Profile 60E1
- Length: 23,013m
- Geometry: 1:38

SNX with Long Wingrails:
- Long Wing Rails made out of profile 60E1
- Forged Vee Block
- Closure Rails – Profile 60E1
- Length: 23,016m
- Geometry: 1:38
Content

General

High Speed Turnout Geometry

Switch

Swingnose Crossing

Conclusion
Plug and Play Turnout with JIT Supply

- Optimal Turnout Geometry
- Most suitable component design
- Preassembled Turnout in the workshop with tight tolerances
- Just in time supply

Highest Initial Quality

- Smallest maintenance requirements
- Longest Lifespan
- Life Cycle Cost Optimisation
High initial quality for LCC optimisation

A Modern High Speed Turnout Technology extends Lifetime with little Maintenance Requirements
Thank you!

Heinz Ossberger
Head of Corporate Engineering and R&D
voestalpine VAE GmbH